y NEROSIMIPLE

PROJECT DOCUMENTATION

Author: innData Analytics Pvt Ltd
Creation Date: 06t Dec 2024

Last Updated:

Document Ref:

Version: v1.0

Prepared For: Aerosimple
Prepared by: Vijay K, Senior Data Engineer
06 December 2024

1|Page

inn2JataAnalytics
Confidentiality

Each party shall treat as confidential all the information obtained from the other pursuant to this Proposal and shall
not divulge such information to any person (except to its own employees and other persons and only to those
employees and persons who need to know the same) without the other party's prior written consent provided that
this clause shall not extend to the information which was rightfully in the possession of such party prior to the
commencement of the negotiations; or which is already in public knowledge or becomes so at a future date (otherwise
than as a result of a breach of this clause). Each party shall ensure that its employees are aware of and comply with
the provisions of this clause. The foregoing obligations as to confidentiality are applicable in perpetuity.

2 | Page

inn[2ataAnalytics
Document Control

1.0 Vijay K Original Response Creation 06'"- DEC-2024

Project Contacts

innData Contacts

Vidya G CEO

AeroSimple Contacts

3 | Page

inn2JataAnalytics

Contents
YooY o TN 1 AT,] o L Pt 5
2. NRS/CRS.. ettt ettt ettt e e et e ettt ettt e e eta e e taa e et ta e e ettt etta e tta ettt e atan e e tba e tan e aaaneeaaaas 6
3. SOIULION OVEIVIEWoniiiiiiiiiiiiii i ettt et e s et eaa e ean s eaeaeenaeas 8
4. Proposed Solution In detail for each module...............coooiiiii e 10
5. Data Process WOrkflOW ... e 12
6. ArChItECIUIE ettt et et e et et et e e e et ean s eneeaaeaanas 13
7. Main FIOW FOF OLAP ...ttt et ettt et et et e ean e ta e ea s e et enesanaens 16
FOrm ANSWer Table IMapPing.......ccovnviiiiiiiie ettt ettt e ettt e e e et a et eaeaesesesesesneneneseaanaenes 16
Data APProval IMapPingc.couiiiiiiiiii ittt et e e e e et et ean et et eaeennaaenensenseneensensenennees 44
DataBase and Table creationc.oouuiiiiiiiiiiiiiiii e 57
Data INSEITIONeuiiniitii i ettt et et et et et et et e e e e e e e 70
Delete OPeration FIOWc.ouiiiiiiiiiiiiiii ettt e et e e e e ettt eeetesessasasnenenesesnansnsnns 78
8. Incremental / Manual refresh of data based on Airport Codes and Form parent ID......................... 80
9. Performance Considerations in Databasec.ccoiiiiiiiiiiiiiiiiii e 82
[T {1 Lo 10 1T S PP PP PP PP 82
3T [T - SO PSP PP PP PP PPN 83
10. Final Deliverables............co.ooiiiiiinii e 84

4 | Page

inn2JataAnalytics

1. Scope of Work

Our objective is to devise a solution for processing and converting real-time data emanating from airports. This
solution will empower the client to construct precise Key Performance Indicators (KPIs). The data, gathered through
dynamic forms at airports, is currently stored in JSON format within a PostgreSQL database. Our aim is to extract,
transform, and load this data into well-organized tables optimized for the purpose of generating KPI reports.

The key components of the scope include:
Initial Data Load:

For the initial data ingestion process, the complete dataset will be extracted from the source PostgreSQL database,
containing dynamic form data in JSON format. This raw data will then be directly transferred to the staging area.
Within the staging database, the unprocessed data will undergo a transformation to achieve a normalized structure.
The transformation and loading procedures will be managed by Apache NiFi, facilitating the storage of the refined
data in the designated target database.

Incremental Data Synchronization using Nifi:

Upon completion of the initial data load, the system will transition to real-time data synchronization employing Nifi.
Nifi captures all modifications (inserts, updates, and deletes) from the source PostgreSQL database through logical
replication. These modifications will be continuously streamed to the staging database for further processing.
Subsequently, NiFi will undertake the transformation and integration of these modifications into the final KPI tables,
ensuring near real-time updates.

Data Transformation and Storage:

The core of the data transformation will be handled by NiFi, which will apply business rules to flatten the JSON data,
normalize it, and aggregate the required fields for KPI computation. Each airport’s data will be stored in separate
tables, allowing for both standardization and customization across various airport operations.

Monitoring and Alerts:

Grafana will be utilized for the purpose of monitoring the performance of ETL pipelines and triggering alerts in the
event of errors or system inefficiencies. Real-time dashboards will offer insights into the operational status of data
processing, encompassing aspects such as throughput, latency, and data quality assessments.

Integrating static and dynamic data files into OLAP environment, starting with a one-time data ingestion process that
includes cleansing, normalizing, and validating the data for completeness and accuracy. Following this, continuous
synchronization of dynamic data will be implemented using Change Data Capture (CDC) to ensure the OLAP Mobility
remains up to date. Transformations will then be applied to merge static and dynamic data into OLAP tables
optimized for analysis.

Testing and validation will be conducted to confirm accurate and efficient data retrieval from the OLAP tables. Finally,
automated job scheduling will be established to manage ongoing data extraction, transformation, and loading
processes, ensuring that dynamic data is regularly updated and integrated seamlessly with the static data.

5 | Page

inn[2lataAnalytics

2. NRs/CRs
SL. No | Type Description Date Requested | Resolution date

Connected the approval tables' mapped data with the form
answer data. Ensured that for multiple steps with the same step

1 CR . 30/08/2024 09/10/2024
name, the step is selected based on the most recent
completed_date column
Mapped form answer data with the inspection schema using the

2 CR . , . 30/08/2024 09/10/2024
select module key and type as the inspection checklist.

3 CR |Implemented dynamic database creation based on airport_id. 30/08/2024 06/9/2024
Appended titles and descriptions for foreign keys (SRA, Hazard,

4 cR | PPene g n keys| 30/08/2024 06/9/2024
Snow) in the mapped form answer data.
Removed the following columns from the mapped form answer

5 CR 30/08/2024 05/9/2024
data: index_key, form_parent_id, and form_version_id.
Mapped various field types (select, multiselect, multi_field) in

6 CR PP ypes { -) 13/09/2024 01/10/2024
form answer data.
Mapped the response column from the hazard and SRA tables,

7 CR o 13/09/2024 20/09/2024
supporting different field types (select, multiselect, multi_field).
Used the version from the form answer table to match the
number column in the inspections_inspection table. If no

8 CR |version is available, the form_date is compared against the 13/09/2024 15/10/2024
publish_date and expiry_date in the inspections_inspection
table. Applied similar logic for approvals data.
Added the prefix 'd*' for repeated/duplicate titles in the form

9 CR 13/09/2024 11/10/2024
answer data, hazard/SRA responses, and approvals data.

10 CR |Replaced airport_id with airport_code for database creation. 14/10/2024 16/10/2024

11 CR |Replaced completed_by and created_by with full names. 14/10/2024 16/10/2024
Removed parent_key and type:annotations from the final

12 CR P &Y vP 14/10/2024 16/10/2024
record.
Implemented incremental loading from the source to the

13 CR . . 21/10/2024 14/11/2024
staging database (using CDC or table columns).
Developed incremental loading logic from the staging database

14 CR P &08 ging 21/10/2024 14/11/2024
to the target database.
Added upsert functionality for data insertion into the target

15 CR 21/10/2024 15/11/2024
database.
Created indexes for newly created or altered tables using NiFi

16 CR . 25/11/2024 04/12/2024
Groovy scripts.
Implemented partitions for newly created tables using NiFi

17 | & |P P y 8 25/11/2024 | 03/12/2024
Groovy scripts.

6 | Page

inn[2ataAnalytics

Added a default column is_deleted (default value false) to all

25/11/2024

18 CR |[tables. Managed deletions using a maintain_history_config_flag 03/12/2024
in NiFi.
Enabled manual full refresh for:
i. All data in one airport by code, refreshing only that specific

19 | CR |database. 25/11/2024 | 04/12/2024

ii. All data in one form for a specific airport, refreshing only that
form's data.

7

| Page

inn2JataAnalytics

3. Solution Overview

The solution for integrating and managing data within the OLAP Mobility environment involves several key steps,
from continuous data synchronization and transformation of static and dynamic data in CSV and JSON formats to
testing and scheduling. Below is a high-level elaboration of the proposed solution:

Continuous Data Synchronization to OLAP Mobility

Maintaining the OLAP Mobility environment synchronized with source systems by capturing and applying changes
(inserts, updates, deletes) from the provided stage database.

e The client will provide access to the stage database, which contains the source data changes through CDC
mechanisms.

e Establish connections to the stage database using ETL tools, such as Apache NiFi processors, to facilitate data
extraction.

e Process and transform the stage-level data using ETL tools to load it into the target database or OLAP Mobility
tables.

e Ensure the data extraction, transformation, and loading processes are efficient and maintain the integrity of
the data.

e Validate that the OLAP Mobility is always up to date, reflecting the latest changes propagated from the stage
database.

Apply Transformations from Base Tables to OLAP Tables

Transforming raw or base-level data into OLAP (Online Analytical Processing) tables optimized for querying and
reporting.

e Define transformation logic based on business requirements, including aggregation, filtering, and deriving
new metrics.

e Use ETL tools or data transformation engines to implement these transformations within the OLAP Mobility
environment.

e Loadthe transformed data into OLAP tables, structured to support complex queries and analytical workloads.

e Ensure that the transformations are performed efficiently, considering scalability and performance.

Testing Connection with OLAP Tables
To validate that the OLAP tables are correctly populated and accessible for analytical purposes:

e Establish connections between the OLAP tables and the analytics or Bl (Business Intelligence) tools used by
the organization.

e Perform test queries to verify that the OLAP tables return accurate and expected results.

e Check the performance of queries to ensure that they meet the required response times and handle the
expected load.

8 | Page

inn2JataAnalytics

e Confirm that security protocols are in place to control access to sensitive data within the OLAP tables.

Scheduling Jobs at Respective Times to Pull Necessary Data

To automate the ongoing data extraction, transformation, and loading processes by scheduling jobs at predefined

intervals:

e Define job schedules based on the data update frequency, business requirements, and operational windows.

e Use Apache NiFi processors to schedule and automate ETL processes for seamless data movement from the
stage to the target database.

e Configure the jobs to run at the appropriate times, ensuring that data is consistently updated and available

for analysis.
e Implement monitoring and alerting mechanisms to track job execution status and quickly resolve any issues

that arise.

9 | Page

inn2JataAnalytics

4. Proposed Solution In detail for each module

Data Integration and Schema Management Solution using NiFi and Postgres

This solution utilizes Apache NiFi to efficiently retrieve, process, and manage data from stage databases in Postgres,

enabling seamless transformation and synchronization with OLAP Mobility. The system ensures flexibility, scalability,

and automation to handle evolving data environments and dynamic schemas.

1. Data Retrieval from Stage Database Using Apache NiFi

Apache NiFi serves as the cornerstone for extracting data from the client-provided stage database in Postgres.
By leveraging NiFi processors, secure connections to the stage database are established, enabling efficient data
retrieval in real-time or batch mode. The system is designed to handle data with varying schemas and structures
dynamically, ensuring compatibility with diverse data formats such as CSV and JSON. Incremental data retrieval
processes ensure that only changes, such as inserts, updates, or deletes, are fetched, optimizing performance
and minimizing redundancy in data synchronization.

2. Handling Dynamic Schemas and Data Mapping

The solution dynamically manages schema variations using NiFi’s built-in capabilities. Incoming data from the
stage database is mapped to align with the required structure of the OLAP Mobility environment. NiFi detects
discrepancies between source and target schemas in real-time and resolves them through automated schema
management. This ensures smooth integration and transformation of data, including applying custom business
rules such as aggregations, filtering, and enriching datasets. Dynamic mapping guarantees seamless processing,
even for evolving data structures, making the solution robust and adaptable.

3. Automated Database and Table Management

Automation is a key feature of this solution, with NiFi dynamically managing the creation and updates of target
tables in OLAP Mobility. When data is processed, NiFi verifies the existence of corresponding tables in the target
database. If a table does not exist, it is created automatically based on the mapped schema. For existing tables,
any missing columns are added dynamically to accommodate new fields. This automation eliminates the need
for manual interventions, streamlines database schema management, and ensures seamless compatibility with
evolving data structures.

4. Data Insertion and Transformation into OLAP Tables

NiFi handles the transformation and insertion of data into OLAP Mobility tables with precision and efficiency.
Transformation logic applies business-specific rules, such as deriving new metrics, filtering irrelevant records,
and enriching datasets. Both batch and real-time processing options ensure flexibility, with NiFi validating every
record for accuracy before insertion. This guarantees high data integrity and consistency, preparing the data in
OLAP tables for complex analytical workloads while supporting rapid decision-making processes.

10 | Page

inn2JataAnalytics
5. Real-Time Data Adaptability and Scalability

The solution's architecture is designed to adapt dynamically to frequent changes in source data schemas. NiFi’s
capability to handle schema modifications ensures that any new data formats from the stage database are
integrated seamlessly without disrupting existing workflows. The scalable design accommodates growing data
volumes and complexity without requiring significant architectural changes. Real-time monitoring and alerting
mechanisms further enhance adaptability, ensuring uninterrupted operations in fast-evolving environments.

6. Scalable and Automated Job Scheduling

NiFi’s flow scheduling capabilities automate the entire data pipeline, from extraction to transformation and
loading into OLAP Mobility. Jobs are scheduled based on the frequency of data updates, ensuring continuous
synchronization with minimal manual oversight. Monitoring tools track the status of job execution, providing
alerts for any failures or delays to enable prompt resolution. By balancing real-time processing with scheduled
batch jobs, the solution optimizes resource utilization while meeting business and operational requirements
effectively.

11 | Page

inn2JataAnalytics

5. Data Process Workflow

The data process workflow comprises two key components: the initial data load and the incremental data load using
CDC with Nifi. Each workflow ensures that data from dynamic forms is processed and transformed into structured
formats for KPI calculation.

e |Initial Data Load Process

For the initial data migration, all existing records from the source PostgreSQL database will be extracted in
bulk. This process is intended to transfer the complete dataset, encompassing historical records, to the
staging area. Subsequently, the data will undergo transformation and processing before being transferred to
the final KPI tables.

The steps involved are:
1. Extract: NiFi will extract the entire dataset from the source database.

2. Transform: JSON data will be flattened, and the business rules will be applied to normalize and clean
the data. This includes validating field types, handling nested fields, and applying aggregation logic.

3. Load: Once transformed, the data will be loaded into the target database. Separate KPI tables will be
created for each airport, ensuring that customized data points are captured.

¢ Incremental Load Process using Nifi

Following the completion of the initial data load, Nifi will handle the management of incremental data loads
by capturing real-time changes from the Stage database through logical replication. These captured changes
will then be transferred to the target database, where they will undergo processing by NiFi.

Transformation with NiFi: NiFi identifies the newly added or updated records, transforms the data based on
the business rules, and loads it into the target KPI tables in near real-time.

Real-time Updates: This process ensures that KPI data is updated in real-time, providing the client with timely
and accurate metrics.

e Error Handling and Data Quality Checks

Throughout both the initial and incremental data loading processes, robust data validation and error-
handling mechanisms will be implemented. In the event of any errors encountered during data extraction,
transformation, or loading, the system will meticulously log these errors and redirect the problematic records
for thorough review. Stringent data quality checks will be conducted to ensure accurate field population,
consistent data types, and adherence to the specified business rules.

12 | Page

inn[2ataAnalytics

6. Architecture

—_——
_________ >
L ey > Sormninne
l |
/1[\ | Authentication
|
Apache NiFi I | ——
Cluster I B B >
L, r -1 - - | {9Grafana
| I
-+ - A | —
> mi‘.:nifi s sl 8] [Monitoring
= I
NiFi Node 3 | i
: L §¢ @ | Power BI
" i e e e ! DBn u
= 1 il ([== ‘
L -
S ~ ©@—{drwrs]
Stage Database NiFi Node 2 | — U
|
| e
I g‘/? @ | Power BI
(ifi DB 1
(@ nifi |
) I Destination
NiFi Node 1 I
~—. . J |
|
|

" e
]
| 4

registry [>— GitHub

NiFi Ecosystem

1. Stage Database

e Starting Point: The Stage Database acts as the source where the initial data is stored.

e Data flows from the Stage Database into the Apache NiFi Cluster for further processing.
2. Apache NiFi Cluster

e NiFi Cluster consists of multiple NiFi Nodes.

e These nodes work together to process and manage the data flow in a distributed manner.

Data Flow:
e NiFi Nodes ingest, process, and route the data from the Stage Database.

e The processed data is sent to the Destination Databases (DB 1, DB 2, DB n) for storage and further
analysis.

13 | Page

inn2JataAnalytics

3. Authentication (OpenLDAP)
e Purpose: OpenLDAP provides authentication services for secure access to the Apache NiFi Cluster.

e Integration: Authentication ensures only authorized users or processes can interact with NiFi
nodes.

4. Monitoring (Grafana)
e Purpose: Grafana is integrated into the workflow for monitoring purposes.
e Functionality:
o It monitors the performance and health of the NiFi nodes.
o Tracks system metrics, workflows, and potential issues to maintain optimal operation.
5. Destination Databases
e After processing by the Apache NiFi Cluster, data is sent to multiple Destination Databases:
e These databases serve as the final repositories for the transformed and processed data.
6. Power BI for Visualization
e Data stored in the Destination Databases is accessed by clients using Power BI.
e Purpose:
o Power Bl provides interactive visualizations and business intelligence reports.
o Clients use these reports for data analysis and decision-making.
7. NiFi Ecosystem
The NiFi Ecosystem consists of:
e Apache NiFi Registry:
o Used for version control and managing data flow definitions.
o Ensures workflows are tracked, shared, and reusable.
e GitHub:
o Acts as a repository for storing flow definitions, scripts, and other configurations.

o Facilitates collaboration and version management for the development team.

14 | Page

inn[2lataAnalytics

Workflow Summary:

1.

2.

Stage Database - Initial data storage.

Apache NiFi Cluster (Nodes 1, 2, 3) = Processes and routes data.
Authentication (OpenLDAP) - Secures access to NiFi.

Monitoring (Grafana) = Tracks and monitors the NiFi system.

Destination Databases = Processed data is stored here (DB 1, DB 2, DB n).
Power Bl - Clients visualize and analyze the data.

NiFi Ecosystem (Registry and GitHub) - Manages version control and collaboration.

15 | Page

7. Main flow for OLAP

The tables listed below are used in the NiFi flow:

inn[2lataAnalytics

SL. No

Table name

1

data_forms_formanswer

data_forms_formversion

data_forms_formparent

inspections_inspection

airport_airport

users_aerosimpleuser

auth_user

safety_management_hazard

safety_management_hazardschema

10

snow_management_snowevent

11

safety_management_safetyrisk

12

safety_management_sraschema

13

data_forms_formprocess

14

data_forms_formprocess_approvals

15

data_forms_formapprovals

16

data_forms_formapprovaldef

Form Answer Table Mapping

Importing Required Libraries

The script begins by importing essential libraries required for efficient data handling, JSON processing, and database

operations. 10Utils simplifies operations related to input and output streams, such as converting streams to byte

arrays or reading content efficiently. JsonSlurper enables easy parsing of JSON strings into Groovy objects like maps

or lists, facilitating seamless traversal and manipulation of JSON data. Additionally, JsonOutput converts Groovy

objects into JSON strings, making it convenient to serialize structured data for storage or further processing. For

database operations, DriverManager, Connection, PreparedStatement, and ResultSet form the core of JDBC

components. DriverManager manages database connections, while Connection establishes the connection to the

database. PreparedStatement allows the execution of parameterized SQL queries, ensuring enhanced security and

performance. ResultSet helps in row-by-row retrieval of query results.

16 | Page

inn[2lataAnalytics

To handle input streams efficiently, BufferedReader and InputStreamReader are utilized. InputStreamReader
converts raw byte streams into character streams, while BufferedReader adds buffering for efficient memory usage,
particularly when dealing with large datasets. The StreamCallback utility from NiFi is employed to define callbacks
for reading and writing FlowFile content, enabling efficient processing of large data streams within the workflow.

FlowFile Retrieval

The script begins its execution by attempting to retrieve a FlowFile, which acts as a data packet in NiFi workflows,
using the session.get() method. A FlowFile contains both data and associated metadata, which the script processes.
If no FlowFile is available, the script exits gracefully without performing further actions. This ensures that errors or
unnecessary computation are avoided when no input data exists in the session, preserving system resources and
maintaining workflow stability.

Variable Declarations

Reader Setup

The reader variable is initialized to hold a BufferedReader instance, which reads the content of the FlowFile
efficiently. BufferedReader ensures memory efficiency when dealing with large data volumes.

Header and Value Variables

e headers: This array stores column names or field identifiers extracted from the FlowFile's first line.
e values: A corresponding array that holds actual values aligned with the parsed headers. Together, these
arrays serve as the backbone for organizing the input data for downstream processing.

Data Organization Maps

e dataSchema: Stores schema definitions, including field names and metadata, specific to the current form
being processed.

o flattenedAttributes: Simplifies nested or hierarchical structures into key-value pairs, ensuring easier
access and integration during mapping and database storage.

e inspectionSchemas and inspectionFormlds: Manage inspection-related schemas and corresponding
IDs for specific form modules. These variables ensure proper organization of module-specific data.

e schemaMap: Maintains a mapping of field IDs to their respective titles or metadata.

e valueReplacementMap: Stores replacement mappings, particularly for dropdowns, multi-select values,
or enumerated fields, allowing consistent value representation.

Tracking Titles

To handle potential duplicate field titles, titleCountMap tracks occurrences of each title in the schema.
Additional variables like mappedTitles, hazardMappedTitles, and sraMappedTitles ensure that column
names remain unique in the output data. Separate mappings are maintained for general fields, hazard-
specific fields, and Safety Risk Assessment (SRA) fields.

17 | Page

inn[2lataAnalytics

Key Identifiers and Metadata

e id: Represents the unique identifier for the current form answer or record being processed.

o formDate: Captures the date associated with the form submission.

e hazardld, snowld, and srald: Represent unique IDs for hazard, snow, and SRA-specific modules. These
IDs enable conditional processing for corresponding modules.

o hazardSchemalson, hazardResponse, sraSchemalson, sraResponse: These variables store raw or
processed schema and response data for hazards and SRAs. They play a crucial role in conditionally
handling module-specific data, ensuring flexibility in processing form-related content.

General Data Handling

The jsonData variable temporarily holds parsed JSON data extracted from the FlowFile content.
Transformation tracking is managed through variables like updatedSchema, updatedHazardSchema, and
updatedSraSchema, which ensure consistent and unified outputs for general, hazard, and SRA fields after
applying necessary modifications.

Processing the FlowFile Content

The script efficiently processes FlowFile content using the session.write() method, which defines a callback function.
This callback mechanism ensures that potentially large data is handled in a streaming fashion rather than being
loaded entirely into memory.

Reading Data

The content of the FlowFile is accessed through its input stream, allowing real-time data retrieval. The inputStream
variable represents the stream's source, and BufferedReader wraps the stream for efficient, character-based reading.
Encoding is explicitly set to UTF-8, ensuring compatibility with multi-language input data and special characters.

Buffered Reading

The combination of InputStreamReader and BufferedReader allows memory-efficient reading of FlowFile content.
While InputStreamReader handles the conversion of byte streams to character streams, BufferedReader introduces
buffering to improve performance, especially for large datasets.

Header and Value Extraction

e headerLine: The first line of the FlowFile content is read and stored as headerLine. This line contains the
names of fields or identifiers.
e valueline: The second line, which contains the actual data values, is extracted and stored as valueline.

The headers provide the structural context, while the values supply the actual content. These two lines are pivotal
in organizing the data for further processing.

18 | Page

inn[2lataAnalytics

Purpose of Headers and Values

The headers and values act as the foundation for the script’s processing logic. Headers provide a reference to identify
each data field, while values contain the corresponding data. The combination of these arrays enables:

e Field Mapping: Aligning data with the appropriate database schema.
e Data Transformation: Applying transformations such as flattening JSON, replacing values, or enriching data.

e Validation and Integration: Ensuring the data aligns with schema definitions before integrating it into target
systems.

The extracted content is subsequently split, validated, and mapped to prepare it for database interactions or
downstream output generation.

Validating and Parsing Header and Value Lines

The script begins by ensuring that both the headerLine and valueLine are available and valid before proceeding. These
lines are fundamental for extracting and organizing data from the FlowFile content. A conditional check is applied to
confirm their presence. If either line is found to be null, the script logs an error message: "Error reading headers or
values from flow file content" and throws an lllegalStateException. This exception halts further execution, preventing
the script from processing incomplete or invalid data, ensuring data integrity and robustness.

Once validated, the headers and values are parsed for clean extraction. The headerLine is split using a delimiter
defined as a parameter, which is configured in the NIFI global parameters. The trimming operation ensures any
leading or trailing whitespace is removed from each header, resulting in clean and consistent field names. The same
steps are applied to the valueline, producing corresponding values aligned with the headers. The resulting arrays of
headers and values maintain a consistent relationship, where each header corresponds to its value at the same index.

To ensure the original content of the FlowFile remains intact, the data is converted into a byte array using
IOUtils.toByteArray(inputStream) and written to the output stream. This step guarantees that the input content is
preserved while the script processes it further for transformations and validations.

Initializing Form Identifiers

The script initializes placeholders for critical form identifiers, namely formParentld and formVersionld, both of which
are initially set to null. These identifiers are later extracted dynamically from the FlowFile content during the header
and value mapping process.

e formParentld: This identifier links the current form data to its parent form, and database table selection
during downstream processing.

e formVersionld: Captures the specific version of the form, which is crucial for schema retrieval and enabling
relational mapping and organization.

These variables serve as the foundational keys for subsequent database queries, schema selection, and conditional
logic execution throughout the script.

19 | Page

inn[2lataAnalytics

Iterating Through Headers and Values

The script iterates over each header and its corresponding value using the headers.eachWithindex loop. This ensures

that both arrays are processed in alignment, allowing each header to be mapped to its respective value. During
iteration, the script performs the following operations:

Mapping Headers to Values: The script checks whether the current header has a corresponding value in the
values array. If the value array is shorter than the headers, a default empty string (") is assigned to maintain
alignment. This Prevents null issues during processing.

Mapping Key Fields: Key variables are assigned based on specific header names to identify critical fields:

a. form_parent_id - formParentld: Identifies the parent form ID for organizing or linking forms.

b. form_version_id - formVersionld: Captures the version of the form for schema validation and table
selection.

c. FirstHeader - id: The value of the first header is assigned to the id variable, which serves as a unique
identifier for the current record.

d. hazard_id, snow_id, sra_id: These headers are mapped to respective variables (hazardld, snowld,
and srald), enabling the script to conditionally process hazard, snow, and Safety Risk Assessment
(SRA) modules based on their presence.

e. form_date - formDate: The form date is captured and stored for validation, chronological
organization, or record filtering.

Handling data Fields: If the header is data, the corresponding value is treated as a JSON string and parsed
using JsonSlurper. The parsed JSON content is stored in the jsonData map, allowing further traversal and
manipulation of structured data later in the workflow.

Flattening Attributes: For all headers other than data, the script flattens nested structures into simplified
key-value pairs. This is achieved using the flattenJson function, which processes the value and combines it
with the header name. The resulting flattened attributes are stored in the flattenedAttributes map, a unified
data structure that simplifies further processing and integration.

This iterative process ensures that all headers and values are efficiently mapped, with critical fields identified and

structured data prepared for downstream operations.

Validating Required Fields

To maintain data integrity, the script performs validation on essential fields after mapping:

formVersionld Validation: The script checks whether formVersionld has been assigned a value. If it remains
null, an error is logged: "form_version_id is missing". This identifier is critical because it determines the
database schema and table to be used for the current form data. Without this field, the script cannot proceed
with schema validation or table mapping.

20 | Page

inn[2lataAnalytics

I. formDate Validation: Like formVersionld, the formDate field is validated to ensure it is not null. If the form
date is missing, the script logs an error message: "form_date is missing". The form date plays an important
role in the logical organization of records, chronological validations, or filtering processes for downstream
workflows.

The validation of required fields ensures that incomplete or invalid data does not propagate further into the workflow,
preventing errors during schema validation, enrichment, or database insertion.

Determining the Table Name

The script dynamically determines the target table name based on the availability of specific form identifiers. If the
formParentld is available, the table name is constructed as tbl_form_${formParentld}. In cases where formParentld
is not provided, the script defaults to tbl_form_${formVersionld}_v. This dynamic logic ensures that the correct
database table is selected for querying or inserting form-related data based on the specific form or version identifiers
in the input.

Database Connection Initialization

The script initializes a connection to the database using JDBC, leveraging globally configured parameters from NiFi.
These include dbUrlAero, dbUser, and dbPassword, which are securely stored in NiFi to ensure:

. Reusability: The same database credentials can be used across different scripts and workflows.
Il. Security: Sensitive information, such as passwords, is not hardcoded and is protected within the NiFi
configuration.
The connection is established using DriverManager.getConnection(), which initializes the Connection object
(connectionAero). This connection facilitates SQL query execution and data retrieval. Additional placeholders
are defined to store key variables, including:
I. airportld: Placeholder for the airport identifier, retrieved later during processing.
Il completedByFullname and createdByFullname: Store the full names of the users who completed
and created the form, enabling proper metadata enrichment.

Querying the Schema

To validate and process form answers, the script queries the schema for the current form. A parameterized SQL
query is prepared to fetch the schema column from the data_forms_formversion table. The query uses the following
parameters:

I. form_id: Mapped to formParentld, representing the parent form in data_forms_formversion table.
Il. id: Mapped to formVersionld, identifying the specific version of the form in data_forms_formversion table.

Before binding these parameters, formParentld and formVersionld are converted to integers for query execution.
The query is executed using schemaPreparedStatement.executeQuery(), returning a ResultSet containing the rows
that match the provided identifiers.

21 | Page

inn2JataAnalytics

Tracking Field Titles

To ensure the uniqueness of field titles in the output, the script tracks occurrences of each title using a map
(titleCountMap). This mechanism resolves duplicate titles that may appear within the schema with the D* added to
their title.

Initialization: For each field in the schema, the script checks if the title already exists in titleCountMap. If the
title does not exist. It is initialized with a count of.

Incrementing Count: Each subsequent occurrence of the title increments its count in the map.

Handling Duplicates: The D* is later used to append unique identifiers to titles, ensuring no two fields have
identical names in the output.

Iterating Over Schema Fields

The script iterates through the fields in the schema, specifically within the schemaMap.fields structure. Each field

contains metadata such as:

field.id: A unique identifier for the field.

field.title: The name or label of the field.

field.type: The type of the field (e.g., select, multi_field, inspection_checklist).

Additional Properties: Fields may include attributes like selected_module or predefined values for specific

types.

Each field is processed individually based on its type, and necessary actions are applied to map, track, and transform
the field data.

Processing Fields of Type "inspection_checklist"

If the field’s type is inspection_checklist, and it includes a selected_module, it indicates the field is linked to
a predefined inspection module.

The following actions are taken:

. Form ID Extraction: The selected_module contains a property called key, which uniquely identifies
the inspection module. This key is extracted and stored in the variable formld.
Il Mapping Titles: The field’s ID is mapped to its title in the dataSchema map, ensuring the title is
accessible for downstream transformations.
II. Inspection Form Tracking: The extracted formld is stored in inspectionFormlids][field.id]. This links
the field ID to its associated inspection module, enabling future references during processing.

22 | Page

’lataAnalytics

®

Processing Fields of Types "select", "multiselect", and "multi_field"

For fields of types select, multiselect, or multi_field, the script identifies that these fields allow users to select
one or multiple options from a predefined list of values.

The script performs the following actions:

I. Value Replacement Mapping:
a. The field includes property values, which contains a list of options.
b. Each option consists of a key (internal representation) and a value (human-readable
label).

Il. Mapping Generation: The script creates a mapping of key = value pairs and stores it in
valueReplacementMap(field.id].
This mapping enables transformations where internal keys are replaced with their corresponding labels
during output preparation.

Processing Other Field Types

For fields that are not of types of inspection_checklist, select, multiselect, or multi_field, the script treats
them as standard fields requiring no special handling. The script directly maps each field’s ID to its title in the
dataSchema map. These fields are typically simple text or numeric inputs, which do not require additional
transformations or value replacements.

Purpose of Error Logging

The script incorporates robust error-logging mechanisms to ensure traceability and clarity when specific
conditions are not met.

I. Condition: After executing the SQL query to fetch the schema, the script uses resultSet.next() to
check for results.
a. If norows are returned, the script logs an error indicating that the schema for the given
formParentld and formVersionld was not found.

Il. Error Message: The message is logged in the format: "No schema found for
form_parent_id=${formParentld} and form_version_id=S{formVersionld}".

The log dynamically includes the form identifiers, allowing developers to identify the exact inputs that caused
the error.

23 | Page

inn2JataAnalytics

Importance of Logging This Error
Error logging is crucial for the following reasons:

l. Debugging and Diagnostics: The error message provides immediate feedback to developers or
administrators, helping them identify whether the issue lies with the input data or the database
configuration.

II. Workflow Integrity: Logging ensures that failures are identified at the earliest possible stage,
preventing undefined behavior or incomplete processing.
M. Example Scenarios:
a. If the input data is missing formParentld or formVersionld, the query will fail to retrieve
the schema.
b. If the data_forms_formversion table lacks the necessary schema, the error highlights
potential issues with database integrity or configuration.
Actions to Take Based on the Log

When the error is logged, the following corrective measures can be taken:

l. Investigating the Cause:
a. Verify that the formParentld and formVersionld are correctly extracted from the
FlowFile content.
b. Check if the input FlowFile contains valid form identifiers.

Il. Corrective Measures:
a. If the issue is with the input data, validate and correct the input FlowFile before
reprocessing.
b. theissueis with the database, verify that the data_forms_formversion table contains the
expected schema for the given IDs.

By following these steps, administrators can resolve the issue and ensure smooth execution of the
workflow.

Querying Airport Information

The script retrieves the airport code associated with a given formParentld. This operation is essential for linking form
answers to their respective airport contexts, providing valuable metadata for downstream processes.

SQL Query Details

To fetch the airport code, the script performs a join operation between the data_forms_formparent table
(aliased as dp) and the airport_airport table (aliased as aa):

24 | Page

inni2ataAnalytics
e dp.airport_id = aa.id: Matches the airport_id field in the data_forms_formparent table with the
corresponding record in the airport_airport table.

e dp.id =?: Filters the results to include only the row associated with the specified formParentld.
This ensures that the retrieved airport code corresponds specifically to the form's parent ID.
Setting Query Parameters

The placeholder? in the query is dynamically replaced with the integer value of formParentld using the
following operation:

airportPreparedStatement.setint(1, formParentld.tolnteger()): Safely binds the parameter to the SQL query.

Executing the Query

The query is executed using airportPreparedStatement.executeQuery(), which retrieves the matching
record from the database as a ResultSet.

Processing Query Results
Once the query execution is complete, the script processes the retrieved data as follows:

l. If a matching row is found:
a. The airport code is extracted from the code column using resultSet.getString("code").
b. Tostandardize the identifier, the script prepends the prefix "db_" to the retrieved airport
code. For example, an airport code "ABC" becomes db_ABC.
c. Alog message confirms the successful retrieval and update of the airport ID:
"Airport ID retrieved and updated: db_ABC".

Il. If no matching row is found:
a. The script logs a detailed error message indicating the absence of an airport code for the
provided formParentld:
"No airport_id found for form_parent_id=S{formParentid}".

b. This error helps identify missing or incorrect relationships in the data_forms_formparent
table or potential database misconfigurations.

Querying Full Names of Users
The script enriches the form data by retrieving the full names of users who:

1. Completed the form: The name is stored in the completedByFullname variable.
2. Created the form: The name is stored in the createdByFullname variable.

25 | Page

inn[2lataAnalytics

SQL Query Details
The query selects user full names by joining relevant tables:

o dffa.completed_by - uas.fullname: The completed_by field in the data_forms_formanswer table
(dffa) is matched with the username in the users_aerosimpleuser table (uas) to retrieve the full name.

o dffa.created_by -> uas2.fullname: Similarly, the created_by field in the data_forms_formanswer
table is matched with the users_aerosimpleuser table to fetch the creator's full name.

This join operation ensures that human-readable user names are retrieved for both fields.

Setting Query Parameters
The placeholder? in the query is dynamically replaced with the integer value of the id variable:

o fullnamePreparedStatement.setint(1, id.tolnteger()): Safely binds the parameter to the query.

Executing the Query

The query is executed using fullnamePreparedStatement.executeQuery(), which fetches the user details
matching the specified id from the database.

Processing Query Results
Once the query results are returned, the script processes the data as follows:

l. If a matching row is found:
a. completedByFullname: Retrieves the full name of the user who completed the form.
b. createdByFullname: Retrieves the full name of the user who created the form.

II. These values are then added to the flattenedAttributes map, ensuring that the enriched
metadata becomes part of the output:
a. "completed_by": Updated with the value of completedByFullname. If no value is found,
the existing value in flattenedAttributes is retained as a fallback.
b. "created_by": Updated with the value of createdByFullname. Similarly, if no full name is
retrieved, the script retains the existing value.

This approach ensures that user metadata is included wherever available while maintaining fallback
mechanisms to handle missing data.

Error Handling and Logging

The script incorporates specific error-handling mechanisms for the airport query and user query
processes to ensure traceability and robustness.

26 | Page

’lataAnalytics

inn
Airport Query Error Handling

If the airport query does not return a matching record, the script logs a detailed error message:

e Error Message: "No airport_id found for form_parent_id=S{formParentld}".
This message identifies the form parent ID for which the relationship could not be resolved, allowing
for quick diagnosis of missing or incorrect data in the data_forms_formparent table.

User Query Error Handling

In the case of the user query, no explicit error logging is performed when user data is missing.
Instead:

e If no matching record is found in the database, the completedByFullname and
createdByFullname variables remain null.

e The script does not update the corresponding fields in the flattenedAttributes map,
ensuring that no invalid or incomplete data is introduced.

This silent handling of missing user data allows the workflow to continue smoothly without
introducing unnecessary interruptions.

Initializing Schema Maps

At the start of schema processing, the script initializes the required schema maps to ensure they are clean and contain
only the current processed data. The following schema maps are reset to empty:

e updatedSchema: Holds the processed general schema for form fields.
e updatedHazardSchema: Stores schema details specific to hazard-related fields.
e updatedSraSchema: Maintains the schema structure specific to Safety Risk Assessments (SRAs).

Additionally, a titleOccurrences map is initialized to track how often field titles appear. This map plays a key role in
identifying and handling duplicate field titles, ensuring the final schema output has unique field names.

Updating General Schema

The script processes the general schema for form fields by iterating through each entry in schemaMap.fields,
which contains metadata about the form fields. The metadata for each field includes:

o field.id: A unique identifier for the field.
o field.title: The human-readable name or title assigned to the field.
Handling Duplicate Titles
To ensure field titles remain unique, the script tracks occurrences of each title using the titleOccurrences

map:

27 | Page

inn2JataAnalytics

e Check for Title Existence:
o Ifthe title is not already in titleOccurrences, it is added with an initial count of 1, and the
field ID is mapped directly to the title in updatedSchema.
o If the title already exists in titleOccurrences, its count is incremented. To ensure
uniqueness, the script appends the field ID (D*) to the title (e.g., "field_id_title") and
updates the entry in updatedSchema.

Logging Updated Schema

After all fields have been processed, the updated schema is logged to confirm changes and verify that
duplicate titles were appropriately handled. This log ensures transparency into how the script manages
schema processing and title resolution.

Handling Foreign keys
1. Handling Hazard-Specific Data

The script conditionally processes hazard-specific data if a hazardld is present. This enables targeted
enrichment of form data with hazard-related details, which are retrieved from the database.

Querying Hazard Data
A parameterized SQL query is used to fetch hazard-specific details:

l. Data Retrieved:
a. title: The name or label for the hazard.
b. description: A textual description of the hazard.
c. response: The response data related to the hazard.
d. schema: The JSON schema that defines the structure of the hazard-related fields.

The query performs joins between the following tables:

. safety_management_hazard (smh) and data_forms_formanswer (dff): Joins via hazard_id to
fetch hazard details.

II. safety_management_hazardschema (smh2): Retrieves hazard schema by linking with the
form_id in smh.

Setting Query Parameters
The query placeholder? is replaced dynamically with the integer value of hazardld using:

hazardPreparedStatement.setint(1, hazardld.tolnteger()).

28 | Page

inn[2lataAnalytics

Executing the Query

The script executes the query using hazardPreparedStatement.executeQuery(), which returns a ResultSet
containing the matching row, if found.

Processing Hazard Query Results
When the query executes successfully, the script processes the returned data:

l. Data Extraction:
a. title: Retrieved from the title column in the result set.
b. description: Extracted from the description column.
c. hazardResponse: Stores response-related data for the hazard.
d. hazardSchemalson: Captures the schema definition for the hazard fields in JSON format.

A log message confirms the successful retrieval of hazard details, ensuring visibility into the process before
further handling of the hazard schema.

Parsing and Processing Hazard Schema
If hazardSchemalson is not null, the script proceeds to parse and process the hazard schema:
Parsing Hazard Schema

The hazard schema in JSON format is parsed into a Groovy object using JsonSlurper, allowing the script to
traverse and manipulate the schema data programmatically. The parsed schema contains metadata for
hazard-specific fields.

Processing Hazard Fields
The script iterates through each field in hazardSchema.fields, performing the following actions:

l. Identifying Hazard Field Types:
a. If the field ID begins with the letter d, it is marked for further processing.
b. The field’s ID is mapped to its title in the hazardSchemaMap, ensuring a referenceable
structure for downstream processes.

Il. Handling Select-Like Fields: For fields of types select, multiselect, or multi_field that include
predefined values:

a. Avalue replacement mapping is created to associate internal keys with human-readable
labels.

b. Each key-value pair in the values property is stored in the hazardValueReplacementMap.

29 | Page

inn[2lataAnalytics

This mapping enables transformations where internal representations (e.g., "1", "2") are replaced with
meaningful labels (e.g., "Yes", "No"), ensuring the final output is user-friendly and interpretable.

Handling Duplicate Titles in Hazard Schema

The script begins by addressing the issue of duplicate titles within the hazard schema to ensure all field titles
remain unique. To achieve this, it initializes an empty map called hazardTitleOccurrences. This map tracks
the occurrence of each title as the hazard schema is processed, preventing potential conflicts caused by
duplicate names. The script then iterates through each key-value pair in the hazardSchemaMap, where the
key represents the field ID, and the value represents the field title.

For each field, the script checks whether the title already exists in hazardTitleOccurrences. If the title is not
present, it is added to the map with an initial count of 1, and the field ID is directly mapped to its title in the
updatedHazardSchema. However, if the title already exists in the map, its count is incremented, and the
script appends the field ID to the title to ensure uniqueness.

Processing Hazard Response

After the schema has been processed, the script moves on to handle hazard-specific response data. To store
this response data, an empty map called updatedHazardResponse is initialized. The script first checks
whether the hazardResponse data is present. If a hazard response exists, the JSON-formatted content of the
response is parsed using JsonSlurper, converting it into a Groovy map known as hazardResponseMap. This
parsed response map contains key-value pairs, where the key corresponds to the field ID in the hazard
schema, and the value represents the specific response provided for that field.

Mapping Hazard Response Fields

As the script iterates through the hazardResponseMap, it ensures that the response fields align with the
schema. For each key (field ID), the script checks if it exists in the updatedHazardSchema. If the key is present,
it generates a column name based on the field title. To maintain a consistent format, the field title is
converted to lowercase. Duplicate column names are managed through the hazardMappedTitles map, which
tracks occurrences of each column name. If a column name is encountered for the first time, it is used directly.
If a duplicate column name is detected, the field ID is appended to the column name to ensure uniqueness,
and the occurrence count in hazardMappedTitles is updated accordingly.

For fields that require value replacements, the script checks if the key exists in hazardValueReplacementMap.
This map contains mappings of internal keys (e.g., numeric codes) to human-readable labels. If a
corresponding mapping exists, the script replaces the original value with its equivalent label. If no
replacement is found, the original value is retained as-is. The processed value is then stored in the
updatedHazardResponse map under a new key following the format
hazard_response_S${finalColumnName}. This naming convention ensures that hazard-specific response data
is stored with unique, descriptive keys that are ready for further downstream usage.

30 | Page

inn[2lataAnalytics

Flattening Hazard Response

Once the hazard response data is processed and stored in the updatedHazardResponse map, the script
flattens the data to simplify its structure. Using a helper function such as flattenJson, any nested elements
within the response map are converted into a single-level key-value format. This flattened data is then added
to the flattenedAttributes map, which consolidates all processed attributes, including general form fields,
hazard responses, and additional metadata.

To provide context to the hazard-specific data, the script adds hazard-related metadata to
flattenedAttributes, including:

e hazard_title: Contains the title of the hazard.
e hazard_description: Stores the description of the hazard.

These metadata fields ensure that hazard responses are enriched with descriptive information, improving
clarity and usability. Finally, a log entry confirms the successful addition of hazard details, including the
hazard title and description. This message ensures visibility into the workflow and verifies the successful
integration of hazard response data.

Handling Missing Hazard Data

In scenarios where the query for hazard-specific data does not return any results, the script gracefully handles
the absence of data. Instead of halting the workflow, it logs a clear message indicating that no hazard details
were found for the provided hazardld. The log entry, formatted as "No hazard details found for
hazard_id=${hazardld}", helps identify missing or invalid hazard references in the database. This mechanism
ensures that workflows continue to execute smoothly even when certain hazard data is unavailable, while
also providing traceable feedback for debugging and resolution.

2. Snow Event Data Retrieval and Processing

The script includes a dedicated section to retrieve snow event information based on the value of snowld.
Unlike other components that involve complex schema processing, this part of the script directly fetches
specific details from the snow_management_snowevent table in the database. The focus here is on
retrieving specific attributes, namely the storm name and description of the snow event, to enrich the form
answer data.The process begins with a conditional check to determine whether the snowld is provided. If
the snowld is present, the script proceeds to execute a database query to fetch the corresponding snow
event details. This conditional approach ensures that snow data is processed only when relevant and avoids
unnecessary operations if no snowld is available.

To retrieve the snow event details, a parameterized SQL query is prepared. The query targets two key
columns in the snow_management_snowevent table:

e storm_name: Represents the name of the storm associated with the specific snow event.
e description: Provides additional descriptive context or details about the snow event.

31 | Page

inn2JataAnalytics
The query filters the data by matching the id column in the table with the provided snowld. To ensure secure
and efficient query execution, the placeholder ? in the query is dynamically replaced with the integer value
of snowld using the statement:

snowPreparedStatement.setint(1, snowld.tolnteger())

Once the parameterized query is ready, it is executed using snowPreparedStatement.executeQuery(), which
interacts with the database and returns a ResultSet. The ResultSet contains the matching row for the
specified snowld, if available.

When the query successfully retrieves a matching row, the script processes the results by extracting the
required attributes from the ResultSet:

e stormName: Retrieved using getString("storm_name"), this field contains the name of the
storm linked to the snow event.

e description: Retrieved using getString("description"”), this field offers a descriptive text
providing additional context about the snow event.

Once these values are extracted, they are added to the flattenedAttributes map to ensure they become part
of the consolidated dataset used for downstream processing. The extracted data is stored under descriptive
and identifiable keys:

e snow_storm_name: Contains the name of the storm.
e snow_description: Holds the description of the snow event.

This step enriches the form answer data with snow event metadata, providing meaningful context that can
be leveraged for reporting, analysis, or display purposes. To confirm the successful retrieval and inclusion of
snow details, the script logs a message that includes the values of the retrieved attributes:

"Snow details retrieved and added: storm_name=S{stormName}, description=${description}".

In cases where the query does not return any results—indicated by snowResultSet.next() evaluating to
false—the script gracefully handles the absence of snow data. Instead of halting execution or raising an error,
a log entry is generated to note the issue:

"No snow details found for snow_id=S{snowId}".

This log message ensures that the absence of snow event details is recorded for future debugging, auditing,
or analysis while allowing the workflow to continue without interruption. This approach prevents potential
workflow failures caused by missing data and maintains the robustness and reliability of the overall script
execution.

By handling both successful retrieval and missing data scenarios, the script ensures that snow event
metadata is processed effectively when available and logged appropriately when absent. This makes the

32 | Page

inn[2lataAnalytics

snow event section an integral part of the data enrichment process, contributing to the completeness and

context of the consolidated form answer data.
3.Processing Safety Risk Assessment (SRA) Data

The script includes a section dedicated to retrieving and processing Safety Risk Assessment (SRA) data, which is
conditional upon the presence of a valid srald. This process involves retrieving essential SRA details, such as the title,
description, and response, while also handling and processing the associated schema if it exists. The SRA data serves
as a critical component for enriching the form answer data, providing structured and meaningful information related
to safety risks.

The workflow begins with a conditional check to verify if a srald is available. If the srald is provided, the script
proceeds to query the database to fetch the relevant SRA details and its corresponding schema. The query performs
a join operation between two key tables:

o safety_management_safetyrisk (sms): This table stores the primary SRA data, including the title, description,
and response.

o safety_management_sraschema (sch): This table contains the schema definitions associated with the
specific SRA form.

The query is designed to filter rows based on the provided srald, matching it with the sra_id field in the
data_forms_formanswer table. To ensure security and accuracy, the placeholder ? in the query is dynamically
replaced with the integer value of srald using:

sraPreparedStatement.setint(1, srald.tolnteger()).

Once the query is prepared, it is executed using sraPreparedStatement.executeQuery(), which returns a
ResultSet containing the matching record, if any.

Processing Query Results

If the query successfully retrieves a matching row, the script extracts the following key pieces of data from
the ResultSet:

e Title: Retrieved using getString("title"), this field represents the name or label of the SRA.

e Description: Extracted using getString("description"), this field provides additional context or descriptive
details about the SRA.

e SRA Response: Retrieved using getString("response"), this contains the raw response data for the SRA,
typically formatted as JSON.

e SRA Schema: Extracted using getString("schema"), this contains the schema definition for the SRA in
JSON format.

These extracted values are essential for processing both the response and schema components of the SRA,
enabling the script to map and structure the data appropriately.

33 | Page

inn[2lataAnalytics

Processing the SRA Schema

Once the SRA schema is retrieved, the script initializes two empty maps to organize and manage the schema
data effectively:

e sraSchemaMap: This map stores field IDs as keys and their corresponding titles as values.
e sraValueReplacementMap: This map is used to store value replacement mappings for fields that have
predefined options, such as dropdowns or multi-select lists.

If the sraSchemalson is present, it is parsed into a Groovy object using JsonSlurper. This allows the script to
traverse the schema structure programmatically and process each field in the schema. The script iterates
through the array of fields within the parsed schema object, performing specific actions for each field. During
this iteration, the script first checks whether the field ID starts with the letter 'd". Fields with IDs that meet
this condition are considered valid for further processing and are added to the sraSchemaMap, mapping
their field.id to their corresponding field.title. This ensures that all relevant SRA fields are mapped to human-
readable titles, which can be used later for data enrichment and output generation.

For fields of types select, multiselect, or multi_field that include predefined values, the script processes the
values property. The values property typically contains key-value pairs

The mapping ensures that raw response values, which may contain internal keys, can later be replaced with
their corresponding human-readable labels for improved clarity and usability. The processed schema and
value replacements are stored for downstream use in transforming and enriching the SRA response data.

Handling Duplicate Titles in the SRA Schema

To ensure the uniqueness of field titles in the SRA schema, the script begins by tracking occurrences of each
title. For this purpose, an empty map called sraTitleOccurrences is initialized at the start of the process. This
map plays a critical role in identifying and handling duplicate titles, which might otherwise cause conflicts
during schema processing.

The script iterates through each key-value pair within the sraSchemaMap, where the key represents the field
ID and the value represents the corresponding field title. As it processes each field, the script checks whether
the title already exists in the sraTitleOccurrences map. If the title does not exist, it is added to the map with
an initial count of 1, and the field ID is directly mapped to the title in the updatedSraSchema. However, if
the title already exists in the map, the count is incremented to reflect the duplicate occurrence. To ensure
uniqueness, the script appends the field ID (D*) to the title, generating an updated title like "field_id_title".
This updated title is then stored in the updatedSraSchema, resolving the duplication issue.

Once all fields in the SRA schema are processed, the script logs the updated schema to confirm that duplicate
titles have been effectively handled. This log provides visibility into the changes made and ensures that the
schema is ready for downstream processing without conflicts.

34 | Page

inn[2lataAnalytics

Processing the SRA Response

After handling the schema, the script proceeds to process the SRA response data. To organize this data, it
initializes an empty map called updatedSraResponse, which serves as the storage for the processed SRA
response fields. Before any processing, the script checks if the sraResponse data is present. If the response
exists, it is parsed from its JSON format into a Groovy map called sraResponseMap using the JsonSlurper
utility. This step allows the script to iterate over the key-value pairs contained in the response data.

In this context, the key represents the field ID from the SRA schema, and the value holds the raw response
value associated with that field. By iterating over these key-value pairs, the script systematically maps and
transforms the response data to align with the processed SRA schema.

Mapping SRA Response Fields

For each key-value pair in the sraResponseMap, the script checks if the key exists in the updatedSraSchema.
If it does, the corresponding field title is used to generate a column name by converting the title to lowercase.
To manage duplicate column names, the script maintains a tracking map called sraMappedTitles.

Once the column name is finalized, the script performs value replacement if applicable. If the field ID exists
in the sraValueReplacementMap, the script checks whether the raw response value has a corresponding
replacement value (e.g., mapping a numeric code like 1 to a descriptive label such as "High"). If a match is
found, the value is replaced with its human-readable equivalent. If no replacement mapping exists, the
original value is retained as-is.

The processed response value is then added to the updatedSraResponse map under a descriptive key that
follows the format: sra_response_S${finalColumnName}. This key structure ensures that SRA-specific
response data remains unique, identifiable, and ready for integration into the consolidated output.

Flattening SRA Response

After mapping and processing the SRA response fields, the script simplifies the updatedSraResponse map by
flattening it into a single-level structure. This is achieved using a helper function, such as flattenJson, which
ensures that nested structures within the response data are converted into a straightforward key-value
format. The flattened data is then added to the flattenedAttributes map, which consolidates all processed
attributes, including general form fields, hazard data, and SRA responses.

To further enrich the output, the script adds SRA-specific metadata to the flattenedAttributes map:

e sra_title: Stores the title of the SRA.
e sra_description: Contains the descriptive text associated with the SRA.

A log entry is generated to confirm the successful addition of SRA details, including the title and description:

"SRA details retrieved and added: title=S{title}, description=${description}".

35 | Page

inn[2lataAnalytics

This log provides clear visibility into the successful processing of the SRA response and ensures that the

enriched data is ready for downstream workflows.
Handling Missing SRA Data

In cases where the query for SRA data does not return any results, the script handles the absence of data
gracefully. If the ResultSet from the query is empty—indicated by resultSet.next() returning false—the script
logs a message noting that no SRA details were found for the given srald. The log entry is formatted as
follows:

"No SRA details found for sra_id=${srald}".

This approach ensures that missing data is recorded without interrupting the workflow, providing a clear
trace for debugging or auditing purposes. By logging the absence of SRA details, the script allows developers
or administrators to identify and resolve potential issues with the input data or database configuration.

Processing Inspection Form IDs and Retrieving Schemas

The script processes inspectionFormlds, which is a map containing dSeries (field IDs) linked to their corresponding

formld values. These form IDs represent inspection modules, and the script's primary purpose in this section is to

fetch and process schema details for each inspection form. The schema retrieval is guided by parameters like the

form version (if available) or the formDate (if version is missing), ensuring that the inspection form data is enriched

accurately.

Checking for Version in JSON Data

For each dSeries and formld pair in inspectionFormlds, the script begins by examining whether the field data stored

in jsonData[dSeries] contains a version key. This check determines the appropriate logic for schema retrieval.

The SQL query used to fetch the inspection form schema depends on whether the version is available:

When version is available: A straightforward SQL query retrieves the schema by filtering records based on
the formld and the specific version. This guarantees that the schema fetched matches the exact version of
the form as indicated in the input data.

When version is missing: A more complex SQL query is constructed to retrieve the schema using the formid
and the formDate. In this scenario, additional logic is applied:
a. The query checks whether the formDate falls within the range defined by the schema's publish_date
and expiry_date.
b. If publish_date is null, the script assumes no restrictions and selects the most recent schema based
on the version number.

This approach ensures that even when the version is not explicitly provided, the most relevant schema is selected

based on the form's historical timeline.

36 | Page

inn2JataAnalytics

PreparedStatement Setup

Once the appropriate query is defined, a PreparedStatement is created. The script dynamically binds the
required parameters to the query:

e The formld is bound as a string parameter.
e Either the version or the formDate is bound depending on which value is available for the current
dSeries.

This parameterized query setup ensures security and efficiency during database execution.
Executing the Query

The prepared statement is executed, and the script processes the resulting ResultSet to determine if a
matching schema is found.

e If a matching schema is found:

The schema column from the ResultSet is retrieved as a JSON string. This schema is then parsed using
JsonSlurper, converting it into a structured Groovy object. The parsed schema is stored in the
inspectionSchemas[dSeries] map, effectively linking the schema to the corresponding dSeries field. This
allows the script to seamlessly use the schema for downstream processing, enabling inspection-specific
data enrichment.

e If no schema is found:

The script does not explicitly log an error. However, the dSeries field remains unmodified in
inspectionSchemas, and the absence of schema data is handled gracefully without disrupting the
workflow.

Error Handling

To ensure robustness, the script includes comprehensive error-handling mechanisms to manage
potential issues that might arise during database operations.

e Database or Query Errors:

If an exception occurs during the connection setup or query execution, the script logs a detailed error
message: "Failed to connect to aero database or execute query".

In such cases, the FlowFile is transferred to the failure relationship (REL_FAILURE), and the script exits early
to prevent further processing of invalid or incomplete data. This ensures that downstream components
remain unaffected by errors.

37 | Page

inn[2lataAnalytics

Closing the Database Connection: After the query execution, the script attempts to close the database

connection in the finally block to release resources. If an error occurs during this operation, it logs a warning
message: "Error closing the connection". This structured error-handling approach ensures that all failures are
logged clearly, and resources are managed efficiently, minimizing the risk of unexpected behavior.

Iterating Through Headers and Processing Data

The script begins by looping through all headers in the headers list to process the corresponding values. Special
attention is given to the header labeled data, as its value typically contains structured or nested JSON data. The data
section is significant because it requires additional processing to flatten the nested structures into key-value pairs,
making it easier for downstream workflows to consume and analyze the data efficiently.

Iterating Over Keys in jsonData

As the script processes the jsonData object, it checks whether each key exists in the updatedSchema map.
If a match is found, the script retrieves the corresponding column name from the updatedSchema. At this
stage, the script also fetches additional metadata for the field from schemaMap.fields to determine the
field's type and its properties. These metadata details play a critical role in guiding the next steps, such as
how the value should be transformed, mapped, or flattened.

Handling Non-Annotation Fields

Fields labeled with the type annotation are deliberately skipped because they do not contribute to data
transformation or downstream outputs. For all other field types, the script standardizes the column names
for consistency by converting them to lowercase. These normalized column names are stored as
finalColumnName, ensuring a uniform structure across all processed attributes.

Processing Field Types

The script employs distinct strategies to process different field types, ensuring the structured data is
transformed into a flattened, single-level representation.

Multiselect Fields

For fields that allow multiple selections, where the values are stored as a list, the script processes each item
in the list iteratively:

e A unique key is generated for each value in the format: d_S${finalColumnName}_${idx}, where idx
represents the index of the value within the list.

e The script uses the valueReplacementMap to replace internal keys (e.g., numeric codes) with their
corresponding human-readable labels. If no mapping exists, the raw value is retained.

38 | Page

inn[2lataAnalytics

Multi-Field Fields
For fields containing multiple sub-fields, the script processes each sub-field iteratively:

e The script retrieves the sub-field schema (from multiple_fields) to map sub-field keys to their
respective titles.

e Ifthe sub-field value is itself a nested structure (e.g., a map), the script flattens it recursively to ensure
all values are represented in a single-level format.
e Flattened keys are generated in the format: d_S${finalColumnName}_S${index}_${subFieldTitle}.

This approach enables the script to process multi-structured data while maintaining clarity and hierarchy in
the flattened output.

Select Fields

For select fields, where only a single value is selected, the script uses the valueReplacementMap to replace
internal values (e.g., numeric keys) with their human-readable equivalents. The flattened attribute is then
stored using a key formatted as d_${finalColumnName}. This ensures select fields remain simple, yet
informative, in the final output.

Inspection Checklist Fields
For fields associated with inspection modules, the script processes the linked schema and checklist details:

e |t retrieves the inspection schema from the inspectionSchemas map based on the field ID.
e The script iterates over each inspection item and matches the inspection ID to its corresponding
checklist.

e Each checklist item and its response are flattened into descriptive key-value pairs, creating clear and
readable output.

Default Fields

For all other field types, including nested JSON structures, the script performs a straightforward flattening
operation:

o Nested maps are recursively flattened to produce single-level key-value pairs.
e Flattened keys are generated in the format d_S${finalColumnName} for clarity.

This approach ensures that all data, regardless of complexity, is represented consistently and flattened into
a format suitable for downstream use.

Cleaning Flattened Attributes
After all fields have been processed and flattened, the script iterates through the flattenedAttributes map to ensure

data consistency. During this step:

39 | Page

inn[2lataAnalytics

Any null or empty values are replaced with an empty string ("), standardizing the output and ensuring no

invalid or incomplete data propagates further in the workflow.

This final cleaning phase ensures the processed attributes are robust, complete, and ready for downstream processes

such as database insertion, reporting, or analysis.

Filtering Flattened Attributes

The script begins by refining the flattenedAttributes map to ensure only relevant and meaningful data is retained for

further processing. To accomplish this, specific keys are filtered out to clean up unnecessary or irrelevant entries.

These include keys that:

Start with the prefix index_key_, which are typically temporary or internal keys not required in the final
dataset. The filtering is performed in a case-insensitive manner to ensure comprehensive cleanup.

Exactly match keys like form_parent_id, form_version_id, or parent_key, as these identifiers are already
handled elsewhere in the workflow and do not need to remain in the flattened attributes.

After this filtering step, the flattenedAttributes map contains only meaningful and relevant data, reducing noise and

preparing the attributes for subsequent transformations.

Preparing Utility Functions

To ensure smooth and standardized handling of attribute names, the script includes two utility functions:

Quote Identifier Function: This function ensures safe handling of attribute names, particularly for database
interactions. It converts attribute names to lowercase, escapes existing double quotes by doubling them,
and wraps the result in double quotes. This safeguards column names, ensuring they are valid and free from
syntax errors when interacting with databases.

Truncate Column Name Function: Given that many databases enforce column name length limits (commonly
63 characters), this function ensures compliance by truncating attribute names that exceed the maximum
length. Names are converted to lowercase, and truncation is performed while preserving the uniqueness of
the column names.

These utility functions are essential for maintaining a clean, safe, and database-compliant structure in the flattened

attributes.

Ensuring Unique Column Names

To prevent conflicts caused by duplicate or excessively long column names, the script ensures that all attribute
keys in flattenedAttributes are unique. This is achieved through the following process:

e A new map called uniqueFlattenedAttributes is initialized to store the processed attributes with unique
column names.

e A columnNameMap is created to maintain a mapping between the unique column names and their
original keys, ensuring traceability.

40 | Page

inn[2lataAnalytics

The script iterates over each key-value pair in flattenedAttributes:

e Truncating Key Names: Keys are truncated to comply with the 63-character limit using the
truncateColumnName function.

e Storing Unique Keys: The script updates the columnNameMap with the newly generated unique key and
adds the key-value pair to uniqueFlattenedAttributes.

As a result, the script produces a clean and conflict-free version of the attributes, ready for downstream use
without concerns about duplicate or invalid column names.

Logging Final Attributes

Once the attributes have been processed and standardized, the script logs the final map of unique attributes. Logging
this information serves two key purposes:

e It allows verification of the integrity and correctness of the processed data.
e |t provides a valuable debugging tool in case issues arise downstream in the workflow.

The log acts as a checkpoint, ensuring transparency into the state of the flattened attributes before they are serialized
and used further.

Preparing Flattened Attributes for Output

The next step involves preparing the uniqueFlattenedAttributes map for output. The map is serialized into a JSON
string using JsonOutput.toJson, producing a structured representation of the attributes. This serialized JSON, stored
in the variable flattenedAttributes)son, is ideal for integration into workflows that require structured and readable
data formats. It can be stored, transferred, or further processed without requiring additional transformations.

Adding Metadata to the FlowFile
The script enriches the FlowFile with key metadata attributes that are critical for downstream workflows. These
attributes include:

e Form_Answer_id: Represents the unique identifier of the form answer.

o flattenedAttributes: Contains the flattened attributes as a serialized JSON string, ensuring all transformed
data is available in a structured format.

e tableName: Specifies the database table name associated with the form, providing context for data storage.

e airport_id: Captures the airport ID, linking the data to its geographical or operational context.

o form_version_id: Includes the version ID of the form to maintain version-specific integrity in the workflow.

By embedding these metadata values into the FlowFile, the script ensures that all relevant information travels with
the data, enabling smooth handoff to subsequent stages of the pipeline.

Transferring the FlowFile

After enriching the FlowFile with flattened attributes and metadata, the script transfers it to the REL_SUCCESS
relationship. This step marks the FlowFile as successfully processed and ready for the next stage in the workflow.

41 | Page

innltataAnalytics
Transferring the FlowFile to REL_SUCCESS is an indication of completion, ensuring seamless progression through the
workflow pipeline.

Handling Data Parsing

The script also includes a parseValue function to handle the parsing of raw values in the dataset. This function
attempts to safely parse values into JSON objects, ensuring that malformed data does not interrupt the workflow. If
parsing fails, the function gracefully returns the original value. Additionally, to ensure compliance with JSON
standards, single quotes (') in the raw data are replaced with double quotes ("). This adjustment guarantees that the
data remains robust and compatible with JSON-based systems.

The parseValue function plays a crucial role in managing inconsistent or potentially malformed data, providing
resilience to the overall script execution.

Purpose of the Functions

The functions flattenJson and flattenNestedJson are specifically designed to simplify hierarchical or nested data
structures by transforming them into flat, single-level key-value pairs. This flattening process makes JSON data more
manageable and compatible with systems that require straightforward, non-nested formats, such as relational
databases, analytics pipelines, or integrations with other processing systems. By expanding complex structures into
unique and descriptive keys, these functions improve data accessibility and usability for downstream workflows.

Flattening Logic in flattenJson

The flattenJson function handles a variety of data types—maps, lists, and primitive types—ensuring all nested levels
of the input structure are flattened recursively.

Processing Maps

A map represents a collection of key-value pairs where keys are strings and values can range from simple types (e.g.,
strings, numbers, booleans) to more complex structures like nested maps or lists.

e When the input data is a map, the function evaluates its content:
o If the map is empty, the prefix (which acts as the current key name) is mapped to an empty JSON
object ('{}'), representing an absence of content in a structured way.
o Ifthe mapis non-empty, the function iterates over each key-value pair within the map. For each pair:
= A new prefix is generated by appending the current key (converted to lowercase for
consistency) to the existing prefix, separated by an underscore.
= The function calls itself recursively with the value associated with the current key. This
recursive approach ensures that any further nested maps or lists are processed and flattened
appropriately.
= The flattened results from all recursive calls are merged into the final result map, preserving
the hierarchical structure through unique, descriptive keys.

42 | Page

inn2JataAnalytics

Processing Lists

A list is an ordered collection of values that may contain elements of any data type, including maps or other lists.

e When the input data is a list, the function evaluates its content:
o If the list is empty, the prefix is mapped to an empty JSON array ('[]'), maintaining clarity about the
absence of list elements.
o Ifthe list is non-empty, the function iterates over each value in the list. For each value:
= The current index of the value is appended to the prefix, ensuring each element in the list is
assigned a unique key.
= The function is called recursively with the current list element, enabling further flattening of
any nested structures within the list.

The result is a flattened representation of the list where each element is uniquely identified and appropriately
prefixed, maintaining both order and hierarchy in a simplified form.

Processing Other Data Types

For primitive data types such as strings, numbers, or booleans, the function handles them directly without any further
recursion. If the input data is neither a map nor a list:

e The current prefix is directly mapped to the corresponding data value.

The result of the flattenJson function is a fully flattened map where all nested structures—whether maps, lists, or
other data types—are expanded into unique keys. Each key reflects its position and hierarchy in the original data
structure, creating a single-level map that retains the depth and context of the input JSON.

Flattening Logic in flattenNestedJson

The flattenNestedJson function is like flattenJson but focuses primarily on maps and treats lists as atomic, non-
recursive values. This distinction makes it particularly effective for use cases where only nested maps need to be
expanded, while lists are preserved as single units.

Results of the Functions

The result of the flattenJson function is a fully flattened map where every element—regardless of depth or
complexity—is represented as a unique key-value pair. The keys are descriptive, combining prefixes and indices to
retain the hierarchy and order of the original JSON structure while simplifying its representation into a single level.

The result of the flattenNestedJson function, on the other hand, focuses solely on expanding nested maps, treating
lists as standalone values. This approach ensures that deeply nested maps are flattened, while lists remain intact,
preserving a balance between simplification and structural integrity.

Both functions play a vital role in preparing hierarchical data for workflows that require flat structures, such as
database storage, data pipelines, or reporting systems. By transforming complex JSON data into simple, accessible
key-value formats, these functions ensure compatibility, ease of use, and efficiency across downstream processes.

43 | Page

inn2JataAnalytics

Data Approval Mapping

Importing Required Libraries

The script begins by importing essential libraries required for efficient data handling, JSON processing, and database
operations. 10Utils simplifies operations related to input and output streams, such as converting streams to byte
arrays or reading content efficiently. JsonSlurper enables easy parsing of JSON strings into Groovy objects like maps
or lists, facilitating seamless traversal and manipulation of JSON data. Additionally, JsonOutput converts Groovy
objects into JSON strings, making it convenient to serialize structured data for storage or further processing. For
database operations, DriverManager, Connection, PreparedStatement, and ResultSet form the core of JDBC
components. DriverManager manages database connections, while Connection establishes the connection to the
database. PreparedStatement allows the execution of parameterized SQL queries, ensuring enhanced security and
performance. ResultSet helps in row-by-row retrieval of query results.

To handle input streams efficiently, BufferedReader and InputStreamReader are utilized. InputStreamReader
converts raw byte streams into character streams, while BufferedReader adds buffering for efficient memory usage,
particularly when dealing with large datasets. The StreamCallback utility from NiFi is employed to define callbacks
for reading and writing FlowFile content, enabling efficient processing of large data streams within the workflow.

FlowFile Retrieval

Now that the necessary libraries are in place, the script retrieves a FlowFile from the NiFi session usingsession.get().
A FlowrFile is a core data object in NiFi, representing the unit of data being processed. If no FlowFile is available, the
script terminates early with return. This check ensures the script does not continue executing unnecessarily when
there’s no data to process, making it more efficient. The FlowFile object is essential for interacting with the data
being passed through the NiFi pipeline, and this retrieval step ensures that there is data to work with before
proceeding to the next steps in the script.

Attribute Retrieval and Validation
Retrieving Attributes
The script retrieves two important attributes, formAnswerld and formVersionld, from the FlowFile using
flowFile.getAttribute(). These attributes are essential for identifying the specific form and its version for
further processing.
Validating Attributes
The script checks if both formAnswerld and formVersionld are present. If either of these attributes is missing,

the script will log an error and move the FlowFile to the failure relationship. This validation ensures that the
necessary information is available for the next steps in the process.

44 | Page

inn2JataAnalytics

Error Logging and Transfer to Failure

If the validation fails (i.e., one or both attributes are missing), the script logs an error and transfers the
FlowFile to the failure relationship (REL_FAILURE). The script terminates early to avoid further processing of
invalid data.

This structure ensures that the script efficiently handles the missing attributes, providing appropriate error
logging and FlowFile redirection.

Defining Database Connection Parameters

The script defines three variables for the database connection: dbUrl, dbUser, and dbPassword. These variables hold
the database URL, username, and password, respectively, which are crucial for connecting to the database. The

values for these parameters are provided as placeholders (e.g., #{Source_DB_URL}), which will be replaced with

actual values at runtime.

Declaring the Connection Object

A Connection object, named connection, is declared. This object will be used to establish and manage the
connection to the database. Initially, it is set to null, as the actual connection will be created later in the script.

Preparing for Database Interaction
With the database connection parameters defined and the connection object declared, the script is now
prepared to interact with the database. The next steps (not yet shown) would involve establishing the

connection using the DriverManager and executing SQL queries to retrieve or update data.

This setup ensures that the necessary credentials are in place and the script is ready to work with the
database securely.

Database Query Execution and Data Mapping

Initializing Maps for Data Storage

The script begins by initializing two empty maps: inspectionSchemas and inspectionFormlds. These maps will
later be used to store data related to inspection schemas and form IDs, respectively. They will help in
organizing the data retrieved from the database.

Establishing the Database Connection

The script proceeds to establish a connection to the database using the previously defined parameters (dbUrl,

dbUser, dbPassword). The DriverManager.getConnection() method is called, and if successful, the
connection object is populated with an active database connection.

45 | Page

inn2JataAnalytics

Defining the SQL Query

Next, a SQL query is defined within the script. This query selects various fields from multiple tables
(data_forms_formanswer,data_forms_formprocess,data_forms_formprocess_approvals,data_forms_form
approvals,data_forms_formapprovaldef etc.) by joining them on specific conditions. The query retrieves
approval-related information, such as approval_id, approval_data, approval_step_id, completed_date,
status, and approvals_schema. The query filters results based on the form answer ID (dff.id = ?), which will
be dynamically passed later in the script, this query will retrieve multiple formapprovals data with different
step_id related with same formAnswerld, if we have multiple steps with same step name we are taking step
based on recent completed_date column.

Query Execution and Data Retrieval

Following the SQL definition, the script would use the PreparedStatement to bind the dynamic parameters
(e.g., form answer ID) and execute the query. The results would be captured in a ResultSet, which will be
processed to extract and map the data into the inspectionSchemas and inspectionFormlds maps for later use.

The combination of connection setup and query preparation ensures that the script is ready to retrieve
approval data from the database based on the specific form answer ID.

Executing the SQL Query

Preparing the SQL Statement

The script uses the connection.prepareStatement() method to prepare the SQL query defined earlier
for execution.

connection.prepareStatement(sql): This prepares the SQL query for execution by the database. It
returns a PreparedStatement object that is pre-compiled for optimal performance, and it can accept
parameters dynamically

Setting the Parameter for the SQL Query
Before executing the query, the script needs to replace the placeholder? in the SQL query (defined
in the previous step) with the actual form answer ID. This is done by setting the value using the

setint() method on the preparedStatement.

preparedStatement.setint(1, ...): The setInt() method sets the value of the first parameter (?), which
is the form answer ID. formAnswerld.tolnteger() converts the formAnswerld (which was retrieved as
a string from the FlowFile attribute) into an integer type, as expected by the SQL query.

46 | Page

inn[2lataAnalytics

Executing the Query and Retrieving the Results

After setting the parameter, the query is executed using the executeQuery() method, which retrieves
the result set from the database.

preparedStatement.executeQuery(): Executes the SQL query and returns a ResultSet object
containing the data returned by the query. ResultSet is an object that holds the result of the executed
SQL query, and the script will use this ResultSet to fetch the actual data (like approval_id,
approval_data, etc.) for further processing. This completes the database query execution process,
and the results can now be processed and stored as needed.

Processing Query Results
Initializing Data Containers:
The script begins by defining three variables to store the retrieved data:
I. approvalsList: An empty list that will hold approval data for each row in the ResultSet.

Il. approvalsSchema: This is initialized as null and will later hold the schema for the
approval data.

II. approvalStatus: Initialized as null, this will store the status of the approval.
Iterating Through the ResultSet
The while (resultSet.next()) loop starts to process each row in the ResultSet. For each row, the following steps occur:

I. approval_id: Extracts the approval ID (approval_id) from the ResultSet. approval_data: Fetches the approval
data (approval_data) as a JSON string and parses it using JsonSlurper into a Groovy map.

1. approval_step_id: Gets the approval step ID (approval_step_id) from the ResultSet.

. completed_date: Extracts the completion date (completed_date) from the ResultSet. Each of these values is
added to the approval map, which is then added to approvalsList.

Assigning Approval Status and Schema

l. approvalStatus: If not already set, the status (status) of the approval is retrieved from the ResultSet and
assigned to approvalStatus. This is done once for the first row.

Il. approvalsSchema: Similarly, the schema for approvals (approvals_schema) is retrieved from the ResultSet
and parsed into a Groovy map using JsonSlurper. This is done only once.

47 | Page

inn[2lataAnalytics

Closing Database Resources

Finally, once all rows are processed:resultSet.close(): Closes the ResultSet, freeing resources.
preparedStatement.close(): Closes the PreparedStatement, ensuring the database connection is properly managed.

Handling Missing Approvals Schema and Mapping Inspection Forms

Checking for Missing Approvals Schema

The script first checks if approvalsSchema is null (i.e., no approvals schema was retrieved from the database).
If this is the case:

Logging a Message: An info log is recorded that the approvals schema for the current formVersionld is
missing, and as a result, the script skips approval mapping. This helps in tracking the state of the process in
case the data is incomplete.

Processing Approval Schema if Found If the approvalsSchema exists:

Iterating Through Steps: The script iterates over each step in the approvalsSchema. For each step, it further iterates
over fields associated with that step.

Checking Field Type and Module: For each field, it checks if the field's type is 'inspection_checklist' and if a
selected_module is specified.

If both conditions are met, the script retrieves the formld from the selected_module.key and maps it to the field.id
in the inspectionFormlds map. This is used to track form IDs related to inspection checklists. This logic ensures that
the form IDs for inspection-related fields are stored for further use, and it handles the scenario where the
approvalsSchema is missing in a way that does not break the script's flow.

Iterating Over Inspection Form IDs and Extracting Version Data

Iterating Through Inspection Form IDs

The script iterates over the inspectionFormlds map, where, dSeries represents the field ID for the inspection
checklist. formld is the associated form ID that corresponds to the selected module in the schema.

Extracting Version Data

For each dSeries (field ID) and formld, the script checks the following:

It accesses the approval _data map in the first approval object in approvalsList. It checks if the
approval_data[dSeries] is an instance of Map (ensuring the field is structured as expected). Then, it checks if

48 | Page

inn[2lataAnalytics

this map contains a key called 'version'. If the version key is found, it extracts the version value from the
approval_data associated with the dSeries.

This step ensures that if a version exists in the approval data for the specified field ID (dSeries), it is extracted
and stored in the version variable for further processing.

Retrieving Inspection Schema Data

Defining SQL Query and PreparedStatement for Inspection Data

The script defines a new inspectionSql variable to hold the SQL query for fetching the schema from the
inspections_inspection table based on the formld and version.

The script's first logic focuses on retrieving the inspection schema when a specific version of the form is provided. If
the version exists, the script directly uses the form ID and the provided version number (which is equal to ‘number’
column value in inspections_inspection table) to pinpoint the corresponding schema in the database. This approach
assumes that the input data explicitly specifies the exact version required, simplifying the query execution. By
combining these parameters, the system retrieves the precise schema linked to the specified version, ensuring
accuracy and consistency. This logic is efficient because it eliminates ambiguity, directly fetching the relevant schema
without additional conditions or iterations.

The second logic comes into play when no specific version is provided. In such cases, the script determines the
appropriate schema by checking the form’s completion date against its publishing and expiry timelines. This date-
based logic ensures that the schema retrieved corresponds to the timeframe during which the form was completed.
The script evaluates whether the completion date falls within the range defined by the schema's publish date and
expiry date. If no expiry date exists, the system defaults to using the current date as the upper limit.

if the publish_date is NULL, the system prioritizes the number column to determine which schema to select. This
logicis applied in the ORDER BY clause, where the query ensures that schemas without a publish_date are considered
first and ordered based on the number column in descending order and limit 1 (which is equal to maximum value of
‘number’ column).

Preparing the SQL Statement
For the versioned case, the script sets the formld (converted to string) and version (converted to integer) as
parameters in the prepared statement using inspectionPreparedStatement.setString(1,formld.toString()) and

inspectionPreparedStatement.setint(2, version.tolnteger()).

For the non-versioned case, it sets formld and completed date from the approvalsList to check if the approval date
falls within the publish date range.

49 | Page

inn2JataAnalytics

Executing the Query

The script then uses inspectionPreparedStatement.executeQuery() to execute the SQL query and retrieve the result
into inspectionResultSet.

Parsing the Result

Inside the try block, the script checks if inspectionResultSet.next() returns data. If data exists, the schema (stored as
a JSON string) is retrieved from the result set using inspectionResultSet.getString("schema") and parsed into a Groovy
object using JsonSlurper().parseText().

Storing the Inspection Schema

The parsed inspectionSchemalson is then stored in the inspectionSchemas map using the dSeries as the key. This
ensures that the inspection schema is associated with the specific field ID (dSeries).

Closing the Resources

The try block ensures that the inspectionPreparedStatement and inspectionResultSet are automatically closed after
use, preventing any resource leaks.

Handling Duplicate Titles
To ensure field titles remain unique, the script tracks occurrences of each title using the titleOccurrences map:

e Check for Title Existence:
o If the title is not already in titleOccurrences, it is added with an initial count of 1, and the field ID is
mapped directly to the title in mappedData.
o If the title already exists in titleOccurrences, its count is incremented. To ensure uniqueness, the
script appends the field ID (D*) to the title (e.g., "field_id_title") and updates the entry in
mappedData.

Mapping Data from Approval Data to Schema Fields
Iterating Through Approvals
The script begins by iterating over each approval in approvalsList. For each approval, it attempts to find the
corresponding stepSchema in approvalsSchema.steps using the approval.approval_step_id as the matching

key.

Step Schema Lookup: The script uses find { it.id == approval.approval_step_id } to find the matching step
schema in the approvalsSchema.

50 | Page

inn2JataAnalytics

Verifying the Existence of Fields

Once the correct stepSchema is found, the script checks if stepSchema.fields exists. If this is true, it proceeds
to map the data for that particular approval.

Field Mapping: A new mappedData map is initialized to store the mapped data for the approval.

Iterating Over Fields

For each field in stepSchema.fields, the script checks if the approval.approval_data contains the key
corresponding to the field.id. If the field exists in the approval data, it extracts its value into fieldValue.

Handling Inspection Checklist Fields

If the field.type is 'inspection_checklist' and there is a corresponding entry in inspectionSchemas, the script
proceeds to process the checklist data:

I Inspection Schema Lookup: It retrieves the inspectionSchema for the field from
inspectionSchemas(field.id].

Il. Inspection Data Parsing: If fieldValue is a Map and inspectionSchema.fields exist, the script iterates
over the fieldValue (which is assumed to be a map of inspection IDs to inspection data).

M. Checklist Mapping: For each inspectionld and inspectionData, it tries to find the corresponding
checklist item in the inspectionSchema.fields.

V. Extracting Inner Data: If the checklist contains valid items, the script maps the inner values of each
checklist item into mappedData using a dynamic key based on the field and checklist details (finalKey).

Handling Multi-Field Data

If the field.type is 'multi_field' and fieldValue is a List, the script assumes the field contains multiple subfields,
each of which needs to be processed:

Subfield Processing: It iterates over each multiFieldValue in the list and then over each subkey and subvalue

in multiFieldValue. Subfield Schema Lookup: It retrieves the corresponding subfield schema from
field.multiple_fields and maps the subfield value to a key in mappedData.

51 | Page

inn2JataAnalytics

Handling Select and Multiselect Fields
If the field.type is 'select' or 'multiselect’, the script processes these fields as follows:
I. Select Field: For a select field, the script finds the corresponding valueMapping in field.values and
stores the mapped value in mappedData.
I. Multiselect Field: For a multiselect field, if fieldValue is a list, it collects the mapped values for each
selected option and stores them in mappedData.

Default Field Handling

If none of the specific field types (inspection checklist, multi-field, select, multiselect) match, the script stores
the fieldValue directly in mappedData under the field's title.

Updating Approval Data

Once all fields are processed and mapped, the script updates approval.approval_data with the mappedData for that
approval. This ensures that the approval data is transformed and flattened according to the schema.

Retrieving the Flattened Attributes JSON

The script retrieves the flattenedAttributesJson from the FlowFile attributes using flowFile.getAttribute
(‘'flattenedAttributes'). This attribute is expected to contain the flattened attributes data, typically in JSON format.

FlowFile Attributes: The flattenedAttributes are accessed as an attribute of the FlowFile, which is a key-value pair
storage in NiFi, where FlowFiles can carry metadata and data attributes.

Checking for Missing Flattened Attributes: Next, the script checks whether the flattenedAttributesJson is null or
empty. If this attribute is missing or not available, an error message is logged to indicate that the flattened attributes

are missing.

Error Handling: The log.error function logs a message that includes the failure reason, in this case, that
flattenedAttributes are missing.

Transferring FlowFile on Failure
If the flattenedAttributes)son is missing, the script transfers the FlowFile to the REL_FAILURE relationship, signaling
a failure in processing. This helps in managing the FlowFile flow within NiFi, and it can be reprocessed or analyzed

later.

Failure Path: Using session.transfer(flowFile, REL_FAILURE) ensures that the FlowFile will not be processed
further and will be routed to a failure state in the NiFi flow.

52 | Page

inn2JataAnalytics
Early Return if Missing: Finally, the script returns early if the flattenedAttributesJson is missing. This prevents
the script from continuing and attempting further operations that depend on the flattenedAttributes. The
return statement exits the script.

Flattening and Storing Attributes
Parsing Flattened Attributes JSON

The script begins by parsing the flattenedAttributesJson string (which was retrieved earlier) into a Groovy
map using the JsonSlurper.

JsonSlurper: The JsonSlurper().parseText() method is used to parse the JSON string and convert it into a
Groovy map. The resulting flattenedAttributes will contain the existing key-value pairs that need to be
populated or modified during the processing.

Iterating Over Approvals and Flattening Data

Iterating Over Approvals: The approvalsList.each loop iterates over each approval in the list, and for each
approval, it accesses the approval_data.

Flattening Data: The flattenJson function is called for each field in approval_data, which flattens
nested data into a simpler key-value format. It adds a prefix ("ad_S{key}") to each field's key, helping
to differentiate the flattened attributes from others.

Updating Flattened Attributes: The flattened data for each key-value pair is then added to the
flattenedAttributes map. If there are nested fields, flattenJson ensures they are stored with a unique
key, preserving the hierarchy but making it easier to handle.

Storing Approval Status

Finally, the approvalStatus value (which was set earlier from the database query result) is added to the
flattenedAttributes map

Adding Approval Status: This step ensures that the approval status is included in the flattenedAttributes map,
which is necessary for passing the final status information downstream.

53 | Page

inn2JataAnalytics

Truncating Column Names and Preparing Data
Initializing the Truncated Attributes Map

The script begins by creating an empty map truncatedFlattenedAttributes to hold the modified keys

truncatedFlattenedAttributes: This map will store the flattened attributes after their keys have been
processed (i.e., truncated).

Iterating Over Flattened Attributes

The script then iterates over the flattenedAttributes map (which contains all the flattened data) using each method

Iterating Over Keys and Values: For each key-value pair in flattenedAttributes, the script processes the key and applies
a truncation method to it.

Converting Key to Lowercase: The key.toLowerCase() method ensures that the key is in lowercase before truncating,
making the key uniform for further processing.

Truncating the Key: The truncateColumnName function is called to truncate the key. This ensures that if a column
name exceeds a certain length or has any special formatting requirements (such as removing unsupported
characters), it will be handled accordingly.

Storing Truncated Keys and Values

The truncated key and its associated value are then stored in the truncatedFlattenedAttributes map

Storing in the Map: The new key-value pair with the truncated key is added to truncatedFlattenedAttributes. This
ensures that all keys are processed according to the required length/format before they are used downstream.

Transferring FlowFile and Handling Exceptions
Successfully Processing the FlowFile

Once all the steps are executed without any exceptions, the FlowFile is transferred to the REL_SUCCESS
relationship

REL_SUCCESS: This relationship indicates that the script has successfully completed all tasks and the
FlowFile is ready for further processing downstream. session.transfer(flowFile, REL_SUCCESS): This
line tells NiFi to move the FlowFile to the "success" path, signaling that the data processing was
successful.

54 | Page

inn[2lataAnalytics

Catching Exceptions

If any errors occur during the execution of the database query, connection, or other parts of the script, the
catch block will handle the exception

Exception Handling: The catch block captures any Exception (errors such as database connectivity issues,
SQL exceptions, or any other runtime issues) and logs the error message.

Logging the Error: The log.error method logs the error message and the exception stack trace, making it
easier to debug.

REL_FAILURE: If an error occurs, the FlowFile is transferred to the REL_FAILURE relationship. This signals to
NiFi that the processing has failed, and the file can be handled according to the failure path (e.g., retry, alert,
etc.).

Closing the Database Connection: Finally, whether the script succeeds or fails, the finally block ensures that the
database connection is properly closed.

Ensuring Connection Closure: This block ensures that if the connection object was successfully created and is still
open, it will be closed after the script execution ends. Prevention of Connection Leaks: Closing the connection ensures
that database resources are freed, preventing connection leaks which can affect system performance or stability over
time.

Flattening JSON Data

The flattenJson function is used to flatten nested JSON data into a simpler, key-value pair format, which is more
manageable in NiFi workflows. It transforms hierarchical structures like maps and lists into a flat structure with
composite keys, making it easier to store or pass the data downstream.

Purpose of the Method
The method aims to flatten a Map or List structure by recursively processing each element and creating a
new map where nested objects are flattened by concatenating keys using a delimiter (in this case, an
underscore _). The final map contains a flattened view of the original nested data, which is useful for storing
in databases, creating reports, or sending as JSON data in downstream processes.
Function Breakdown
Flattening Function: The flattenJson function takes two parameters: data: The data to be flattened,
which can be a Map, List, or other primitive types. prefix: A string used to prefix keys in the flattened

structure. It starts as an empty string but accumulates key names as the recursion deepens.

Processing Maps: If the data is a Map, the function iterates over each key-value pair

55 | Page

innltataAnalytics
Recursive Call: For each key-value pair, the function calls itself (flattenJson(value, newPrefix)),
appending the current key to the prefix. The keys are converted to lowercase to maintain consistent
naming conventions. Merging Results: The putAll() method is used to add the flattened results from
the recursive call into the result map.

Processing Lists: If the data is a List, the function iterates over each element with an index: The index
is appended to the prefix to differentiate between elements in the list, ensuring that each flattened
key is unique (e.g., field_0, field_1, etc.). Recursive Call: It recursively flattens each element of the

list.

Base Case: If data is neither a Map nor a List (i.e., a primitive value like a String, Integer, or Boolean),
it adds the current prefix as the key and the data as the value in the result map.

Returning Result: After all recursion is completed, the flattened Map (result) is returned.

56 | Page

inn2JataAnalytics

DataBase and Table creation

Importing Required Libraries

The script begins by importing essential libraries required for efficient data handling, JSON processing, and database
operations. JsonSlurper parses JSON strings into Groovy objects like maps or lists. Enables seamless processing of
JSON data retrieved from the database, making it easier to access and manipulate individual fields. This is especially
useful when the script needs to work with nested or complex JSON structures. DriverManager manages database
connections. Allows the script to establish a connection to a relational database by specifying a connection URL,
username, and password. Without this, the script would not be able to interact with the database to fetch or
manipulate data. Connection represents a persistent connection to the database. This object ensures that the
database is accessible for the script to execute SQL queries. All subsequent database operations rely on this
connection to remain open and valid. PreparedStatement facilitates the execution of parameterized SQL queries.
Ensures secure and efficient interaction with the database by preventing SQL injection and optimizing query
performance. This component is critical when the script involves dynamic SQL queries. ResultSet represents the
output of an executed SQL query. Used to store and iterate through the data retrieved from the database, enabling
the script to extract and use specific fields in further processing. PSQLException (from
org.postgresql.util. PSQLException) specialized exception class for PostgreSQL database errors. Helps the script
handle database-specific issues, such as connection failures or SQL syntax errors, ensuring robust error management
during database interaction.

FlowFile Retrieval and Validation
Retrieving a FlowFile from the Session
The script attempts to retrieve a FlowFile from the current NiFi session using the session.get() method. A
FlowFile is a key concept in NiFi, representing a unit of data that is processed through the system. By calling
this method, the script checks whether there is a FlowFile available for processing. If a FlowFile is found, it is
assigned to the variable flowFile. If no FlowFile is present, the variable will be null.
Checking if the FlowFile Exists
The script then checks if the flowFile variable is null using a conditional statement. If flowFile is null, this
means that there is no FlowFile available to process, and the script will terminate early. The early return
prevents the script from attempting to process non-existent data, thus avoiding errors or unnecessary
operations.

Extracting FlowFile Attributes and Parsing JSON
Extracting FlowFile Attributes
The script extracts certain attributes from the FlowFile. These attributes are key-value pairs that provide

metadata or additional information about the FlowFile’s content. The three attributes extracted are:

57 | Page

innltataAnalytics
I tableName: This attribute holds the name of the table associated with the FlowFile's data. It is
retrieved using flowFile.getAttribute('tableName').

II. flattenedAttributes: This attribute contains JSON data in a string format, which represents a set of
flattened attributes. It is retrieved using flowFile.getAttribute('flattenedAttributes').

lll. airport_id: This attribute holds the identifier for the airport related to the data in the FlowfFile,
retrieved using flowFile.getAttribute('airport_id'). These attributes are stored in variables
(tableName, flattenedAttributesJson, airportld) for use later in the script.

Parsing the Flattened Attributes JSON

After extracting the flattenedAttributes JSON string, the script parses it using JsonSlurper. This is done with
the line new JsonSlurper().parseText(flattenedAttributes)son). The JsonSlurper parses the JSON string and
converts it into a Groovy object, typically a map, which allows for easy traversal and manipulation of the data.
By converting the JSON into a Groovy object, the script can work with individual fields or perform necessary
transformations on the data.

Database Connection Parameters
Defining Database Connection Parameters
In this section, the script defines the database connection parameters that will be used to establish a
connection to the target database. These parameters are stored as variables and will be referenced later in
the script for connecting to the database.
l. dbUrlBase: This variable holds the base URL of the target database. It uses the placeholder
#{Target_DB_URL}, which will be replaced with the actual database URL at runtime. This URL typically

includes the database hostname, port, and the database name.

Il. dbUser: This variable holds the username required for authenticating the database. It uses the
placeholder #{Target DB User} for runtime substitution with the actual database user.

lll. dbPassword: This variable stores the password for the database user, using the placeholder
#{Target_DB_Pwd}. This will be substituted with the actual password at runtime

Connecting Database Parameters to the Script
At this point in the script, the necessary database parameters (dbUrlBase, dbUser, and dbPassword) have

been defined. These parameters will be used to establish a connection to the database, enabling the script
to interact with the database to retrieve or manipulate data.

58 | Page

inn2JataAnalytics
For example, after extracting and parsing the flattened attributes, the script can proceed to use these
parameters to connect to the database and perform operations like fetching approval data or inserting
information into the target database.

Database Connection and Table Management Process
Constructing the Airport-Specific Database URL

The script constructs the database URL for a specific airport by appending the airportld to the base database
URL (dbUrlBase). This dynamically generates the connection string that targets the specific airport's database,
allowing the script to work with different airport databases based on the airportld.

dbUrlAirport: The concatenated URL for the airport-specific database, formed by appending the
airportld to the base URL.

Establishing the Connection to the Database

The script uses a try-catch-finally block to manage the database connection and ensure it is closed properly.
connectionAirport = DriverManager.getConnection("${dbUrlBase}postgres", dbUser, dbPassword): Initially,
the script connects to the postgres database (typically used to manage databases and user access). This is
done using the parameters defined earlier (dbUrIBase, dbUser, dbPassword).

Verifying Database Existence

Once the connection to the postgres database is established, the script checks if the airport-specific database
exists.

checkDatabaseExists(connectionAirport, airportld): This method is used to verify whether the airport-specific
database exists. If the database doesn't exist, the script will proceed to create it.

Creating Database and Initializing Tables

If the airport-specific database does not exist, the script creates the database and initializes
it.createDatabase(connectionAirport, airportld): Creates the airport-specific database. After the database
creation, the script reconnects to the newly created database (connectionAirport =
DriverManager.getConnection(dbUrlAirport, dbUser, dbPassword)) and creates the necessary table and
partition.

Reconnecting to an Existing Database

If the airport-specific database already exists, the script connects directly to it using the previously defined
dbUrlAirport.

59 | Page

inn2JataAnalytics

Checking for the Existence of the Table

The script then checks whether the specified table exists within the airport-specific
database.checkTableExists(connectionAirport, tableName): If the table doesn't exist, it is created along with
the necessary partition using the createTable and createPartition methods.

Handling Existing Tables and Columns

If the table exists, the script compares the existing columns with the flattened attributes to ensure that any
missing columns are added.getExistingColumns(connectionAirport, tableName): This method retrieves the
existing columns in the table. addMissingColumns(connectionAirport, tableName, flattenedAttributes,
existingColumns): If any columns are missing, they are added to the table to align with the structure of the
flattened attributes.

Ensuring Partitions Are Created

Regardless of whether the table already exists or was newly created, the script ensures that a partition is
created based on the updated_at field in the flattened attributes.

createPartition(connectionAirport, tableName, flattenedAttributes["updated_at"]): Creates a partition for
the table based on the updated_at field, ensuring efficient data storage and retrieval.

Successful FlowFile Transfer

Once the database and table operations are completed, the script transfers the FlowFile to the success
relationship (REL_SUCCESS), indicating that the processing was successful.

Error Handling and Logging

If any exception occurs during the database connection or operations, the script logs an error message and
transfers the FlowFile to the failure relationship (REL_FAILURE).

Ensuring Proper Connection Closure

In the finally block, the script ensures that the database connection is closed properly, whether the
operations succeed or fail.

connectionAirport.close(): This ensures that the database connection is closed to prevent resource leaks.

60 | Page

inn2JataAnalytics

Checking Database Existence
Purpose of the Helper Function
The helper function is designed to check whether a specific database exists in the PostgreSQL server.
It accomplishes this by querying the system catalog of PostgreSQL to see if the database name is
listed.

Query Execution and Parameterization

The function begins by preparing a SQL query to check for the existence of the database. The query used

searches the pg_database system catalog for a record where the datname matches the provided database
name.

The query is parameterized, meaning the database name is passed as a parameter to prevent SQL injection
attacks and ensure safe execution. The prepared statement (preparedStatement) is used to execute this

query.
Checking the Query Result

The result of the query is stored in a ResultSet. This object contains the rows returned by the query, which
in this case, would only contain a single row if the database exists.

resultSet.next(): This method is called to check if the query returned any rows. If it returns true, it means the
database with the specified name exists; otherwise, it does not.

Closing Resources

Once the check is performed, the function ensures that both the ResultSet and PreparedStatement are closed
properly to release resources.

Closing the ResultSet and PreparedStatement is crucial for avoiding memory leaks and ensuring that the
database connection remains efficient.

Returning the Result

Finally, the function returns a boolean value, exists, which indicates whether the database was found. If the
database exists, true is returned; otherwise, false.

61 | Page

inn2JataAnalytics

Creating a Database

Purpose of the Helper Function

The function is responsible for creating a new database on the PostgreSQL server. It uses the
provided connection to execute a SQL command that generates the new database.

Executing the SQL Query

The function constructs a SQL query that creates a new database with the name provided (dbName).
The query is dynamically formed by embedding the database name into the CREATE DATABASE SQL
command.The database name is passed as a parameter to ensure that the correct database is
created.

Preparing and Executing the Statement

After preparing the query, the function executes it using executeUpdate(). This method is used
because it performs a modification operation (in this case, creating a new database) rather than a
query that returns data.

Closing the Statement

After the query is executed, the prepared statement is closed to free up resources and ensure the
connection remains clean.

Logging
Once the database is successfully created, a log message is generated to inform the user that the
new database was created. This log message helps in tracking the execution of the script and
confirming that the database creation was successful.

Checking Table Existence
Purpose of the Helper Function
The checkTableExists function is designed to check if a specified table exists within a PostgreSQL

database. This is necessary to determine whether to create a new table or perform additional
operations on an existing one.

62 | Page

’lataAnalytics

inn
Query for Checking Table Existence

The function constructs an SQL query that checks if the table exists in the information_schema.tables
system catalog. This catalog stores metadata about all tables in the database. The SQL query uses
SELECT EXISTS, which returns a boolean value indicating whether the specified table exists.
Preparing and Executing the Query

The query is parameterized by setting the table name in the prepared statement. This avoids SQL
injection risks and ensures that the table name is safely included in the query. The executeQuery()
method is used to run the query and retrieve the result.

Interpreting the Result

The result of the query is stored in a ResultSet. The function checks whether the query returned any
data and if the result is true, meaning the table exists.

The resultSet.next() checks if the result set has any rows, and resultSet.getBoolean(1) retrieves the
boolean value that indicates whether the table exists.

Closing Resources

Once the existence check is complete, the function closes both the ResultSet and PreparedStatement
to release resources.

Returning the Result

The function returns a boolean value indicating whether the table exists. If the table exists, it returns
true; otherwise, it returns false.

Creating a Table
Purpose of the Helper Function
The createTable function is responsible for creating a new table in the PostgreSQL database. It takes
the database connection, the table name, and a map of attributes (columns) as inputs. The function
constructs and executes a dynamic SQL query to create the table with the specified attributes.

Validating and Filtering Columns

The function starts by filtering the provided attributes to exclude certain columns, such as "id" and
"updated_at". These columns are handled separately in the table creation process.

63 | Page

innltataAnalytics
validColumns: This list contains the columns from the attributes map that are valid (not null or
excluded columns). These columns are then added to the SQL query.

Constructing the SQL Query
The function constructs a CREATE TABLE SQL query. The table creation statement includes:

I "id" SERIAL: A primary key column that auto-increments.

Il. "updated_at" TIMESTAMP WITH TIME ZONE: A column to store timestamps with time zone
information. Valid columns: These are dynamically added based on the filtered attributes
and are defined as TEXT columns in the table.

M. "is_deleted" BOOLEAN DEFAULT FALSE: A column to mark records as deleted, defaulting to
FALSE.

V. Primary Key: The primary key is set on both the "id" and "updated_at" columns to ensure
unique records are identified by both.

V. Additionally, the table is partitioned by the "updated_at" column using range partitioning to
facilitate better performance with large datasets.

Executing the Query

The function prepares the SQL query using a PreparedStatement and executes it with
executeUpdate() to create the table in the database.

Closing Resources

Once the table is created, the function closes the PreparedStatement to release resources and avoid
memory leaks.

Logging the Table Creation

Finally, the function logs an informational message that indicates the table was created and specifies
that partitioning is applied on the "updated_at" column.

Retrieving Existing Columns in a Table
Purpose of the Helper Function
The getExistingColumns function is used to retrieve the list of column names in a specific table from

the database. This function is essential for comparing the current state of a table with the incoming
data and determining if any new columns need to be added.

64 | Page

inn[2lataAnalytics

SQL Query to Fetch Columns
The function constructs an SQL query to retrieve the column names from the
information_schema.columns view. This view contains metadata about all columns in the database,

including their names and types.

SQL Query: The query filters columns based on the table_name provided, ensuring that only the
columns for the specified table are returned.

Preparing and Executing the Query

The query is parameterized, and the table name is set in the prepared statement to prevent SQL
injection and ensure safe query execution.

The executeQuery() method is used to run the query, retrieving the results from the database.

Processing the Result Set
The function processes the results by iterating over each row in the ResultSet. For each row, the

column name is fetched using resultSet.getString("column_name") and added to a set called
existingColumns.

Using a Set: A set is used here to store column names because it automatically handles duplicate
values, ensuring that each column name appears only once.

Closing Resources

After retrieving all the column names, the function closes both the ResultSet and PreparedStatement
to free up database resources and prevent memory leaks.

Returning the Column Names

The function returns the existingColumns set, which contains the names of all columns in the
specified table.

65 | Page

inn2JataAnalytics

Adding Missing Columns to the Table
Purpose of the Helper Function
The addMissingColumns function is responsible for adding columns to a table that do not already
exist. This is important for keeping the table schema up to date with the incoming data, especially
when new attributes are introduced.
Identifying Columns to Add
The function first filters the provided attributes map to identify columns that:
i. Are not already present in the existingColumns set (the set of columns that already exist in

the table).

ii. Have a wvalid name (non-null, non-empty, and properly truncated using
truncateColumnName).

iii. Filtering Logic: The findAll method is used to filter out columns that are either empty, null,
or already exist in the table.

iv. The truncateColumnName method ensures that column names are in the proper format
(e.g., truncating them if they exceed length limitations).

Adding the Columns

Once the missing columns are identified, the function iterates over them and attempts to add each
column to the table using the addColumn function.

Error Handling

If a column already exists in the database, a PSQLException will be thrown. The function catches this
exception and logs a warning, indicating that the column already exists and is being skipped. If the
error is not due to the column already existing, the exception is rethrown for further handling.

Skipping Invalid Columns

Before attempting to add a column, the function checks if the column name is valid (non-null and
non-empty). If the column name is invalid, it is skipped, and the process moves to the next column.

66 | Page

inn2JataAnalytics

Exception Handling
The function includes a try-catch block to gracefully handle any database exceptions, particularly the
case where the column already exists. This ensures that the process continues without crashing even
if the column is already present.

Adding a Column to the Table
Purpose of the Helper Function
The addColumn function is used to add a new column to a specified table in the database. This is
necessary when the schema needs to be updated with new fields, allowing the table to
accommodate incoming data attributes that were previously missing.
SQL Query for Adding the Column
The function constructs an SQL query using the ALTER TABLE statement to add a new column to the
specified table. The columnName is set to TEXT type, which means that the new column will hold
textual data.
SQL Query: The column name is wrapped with quoteldentifier to ensure it has properly escaped,
protecting against potential SQL injection issues and ensuring the name is valid, especially if it
includes special characters or spaces.
Preparing and Executing the Query
Once the SQL query is created, the function prepares the statement with the
conn.prepareStatement(query) method. The executeUpdate() method is used to run the query,
which modifies the table structure by adding the new column.

Closing the PreparedStatement

After the column has been added successfully, the PreparedStatement is closed using
preparedStatement.close() to release resources and prevent memory leaks.

Logging the Action

The function logs an informational message using log.info to confirm that the column has been
successfully added to the table. This log helps track the schema changes made by the script.

67 | Page

inn2JataAnalytics

Creating Partitions for the Table

Purpose of the Helper Function

The createPartition function is responsible for creating partitions for a given table in the database, based on
a column (updated_at) that typically stores timestamp values. The function ensures that new partitions are
created dynamically based on the year and month derived from the updated_at field, which is crucial for
optimizing data management and query performance on large datasets.

Extracting Year and Month

The updatedAt parameter (which represents the timestamp) is first trimmed of any excess spaces. The date

part is extracted using split(" ")[0], ensuring that only the date (and not the time) is considered. The year and

month are further extracted by splitting the date string by hyphen "-".
Constructing the Partition Name
A partition name is dynamically generated using the table name and the extracted year and month, following

the format: "tableName_year_month". This ensures that the partition name is both unique and easily
identifiable.

Checking if the Partition Already Exists

The function first checks if a partition already exists for the given year and month by querying the pg_tables
system catalog. If the partition exists, no further action is taken. If the partition does not exist, the function
proceeds to create a new one.

SQL Query: A SELECT EXISTS query is used to check if a table (partition) with the generated partition name
already exists. If it does, the function skips the creation process.

Creating the Partition
If the partition doesn't exist, the function constructs a CREATE TABLE statement to create a new partition.
The partition is created for the specified table and is bound by a date range (from the first day of the month

to the end of the month). The timestamp (updated_at) is used to determine the partition's date range.

Partition Date Range: The partition range is calculated using the updated_at value, adding a one-month
interval to define the partition's upper boundary.

SQL Query: The query creates the partition using the FOR VALUES FROM ... TO ... clause, which specifies the
valid range of values for the partition.

68 | Page

inn2JataAnalytics

Preparing and Executing the Partition Creation Query

The query is then prepared and executed using conn.prepareStatement(createQuery). After execution, the
PreparedStatement is closed to free up resources.

Logging the Action

Finally, a log message is generated to confirm that the partition has been created successfully, including the
year and month for which the partition was created. This helps in tracking the partition creation and ensuring
that the process is completed correctly.

Helper Functions for Quoting Identifiers and Truncating Column Names

These functions are used to handle database table and column names safely, especially when working with
PostgreSQL. They ensure that your database operations don't run into issues because of name length or special
characters.

quoteldentifier Function

This function makes sure that table and column names are formatted correctly for PostgreSQL. PostgreSQL
requires that names with special characters or spaces, or that are case-sensitive, must be enclosed in double
quotes ("). It takes a name (like a table or column) and adds double quotes around it. If the name already
contains double quotes, it escapes them by doubling them up (e.g., " becomes ""), so it’s valid in SQL.

Why It's Needed: If your table or column name has special characters (like spaces or hyphens) or is a reserved
word (like SELECT), you need to quote it to avoid errors. It ensures that the database can correctly interpret
the name.

truncateColumnName Function

PostgreSQL limits column names to a maximum of 63 characters. This function makes sure that column
names stay within that limit. If a column name is too long, it cuts it down to 63 characters. It also makes sure

that any double quotes (") in the name are escaped properly.

Why It's Needed: PostgreSQL will throw an error if a column name is longer than 63 characters. This function
ensures that column names are always within the valid length and formatted properly.

69 | Page

inn2JataAnalytics

Data Insertion

Importing Required Libraries

The script begins by importing essential libraries required as JsonSlurper used to parse JSON strings into Groovy
objects like maps or lists. It simplifies working with JSON data, making it easier to access and manipulate nested
structures. DriverManager java class that manages database connections. It establishes a connection to a database
by using a connection URL, username, and password, enabling database interactions. Connection represents an open
connection to the database, used to execute SQL queries and retrieve results. All database operations rely on this
active connection. PreparedStatement class used to execute parameterized SQL queries. It helps prevent SQL
injection and optimizes query performance by allowing dynamic query execution. Types utility class that provides
constants for SQL data types, ensuring that correct types are used in SQL queries and preventing type mismatches.
OffsetDateTime represents a date-time with an offset from UTC, used for handling time zone-aware date-time values,
ensuring accurate time calculations across time zones. DateTimeFormatter class used to format and parse date-time
objects. It ensures that date-time values are consistently represented and compatible with various systems.
Timestamp represents a specific point in time, typically used for storing and manipulating timestamp data in
databases, ensuring accurate time tracking.

FlowFile Retrieval and Validation
Retrieving a FlowFile from the Session
The script retrieves a FlowFile from the NiFi session by calling the session.get() method. In NiFi, a FlowFile
represents a piece of data that flows through the system. This method checks if there is a FlowFile available
for processing, and if so, assigns it to the variable flowFile. If no FlowFile is available, the method will return
null, indicating that there is no data to process at that moment.
Checking if the FlowFile Exists
After attempting to retrieve the FlowFile, the script checks whether the flowFile variable is null. If it is null,
this means no FlowFile was retrieved from the session. The script then exits early using a return statement
to prevent any further processing. This step ensures that the script doesn't try to operate on a non-existent
FlowFile, which could lead to errors or unnecessary processing steps.

Attribute Extraction and Validation
Extracting FlowFile Attributes
The script extracts three attributes from the FlowFile: tableName, flattenedAttributes, and airport_id. These
attributes are essential for further processing, as they provide information about the target database table,

the data structure to be inserted, and the specific airport ID that will be used to customize database
interactions. The flowFile.getAttribute() method retrieves the values of these attributes from the FlowFile.

70 | Page

inn2JataAnalytics

Validating the Table Name

The script checks if the tableName attribute is present and valid. This is done by verifying that the value is
not null or empty and does not consist of only whitespace (using trim()). If the tableName is invalid or missing,
the script logs an error and transfers the FlowFile to the REL_FAILURE relationship. This ensures that the
script does not proceed with invalid or incomplete data, preventing potential issues in later stages of
processing.

Parsing Flattened Attributes

The script then parses the flattenedAttributesJson (a JSON string) using JsonSlurper. This parsing step
converts the JSON string into a Groovy map, allowing the script to easily work with the data. The parsed map,
flattenedAttributes, will hold the key-value pairs that define the data to be processed or inserted into the
database. This conversion is essential for working with structured data, such as JSON, in a programmatic way
within Groovy scripts.

Validation of Required Columns

Checking for the 'id' Column

The script checks if the flattenedAttributes map contains a key named id, which is crucial for
identifying the record in insert or update operations. The check is case-insensitive, meaning it will
match any variation of "id" (e.g., "ID", "Id", etc.). If the id column is missing from the
flattenedAttributes map, the script logs an error message indicating that the "id" column is required.

Handling Missing 'id' Column

If the id column is not present, the script transfers the FlowFile to the REL_FAILURE relationship,
indicating that the current FlowFile cannot be processed further due to missing required data. The
early return prevents further processing, ensuring that the script does not proceed with incomplete
orinvalid data.

Validation of Valid Columns
Dynamically Validating Columns

The script dynamically validates the columns by filtering the flattenedAttributes map to include only
those entries where the key (column name) is non-null and non-empty after trimming any
whitespace. This ensures that only valid columns are considered for insertion or update. The
validation is done by calling the findAll method on the flattenedAttributes map, which checks if the
column name (key) is valid.

71 | Page

inn2JataAnalytics

Handling Empty Columns

If no valid columns are found after filtering, meaning the map contains no columns with non-null and
non-empty names, the script logs an error message indicating that there are no valid columns to
process. The FlowFile is then transferred to the REL_FAILURE relationship, stopping further execution
to avoid processing data without any valid columns. This ensures data integrity by only allowing valid
columns to be processed.

Database Connection Setup
Defining Database Connection Parameters

The script starts by defining the basic parameters required to establish a connection to the target database.
These include:

I dbUrIBase: The base URL of the target database.
Il. dbUser: The username used for database authentication.
M. dbPassword: The password associated with the database username.

These parameters are placeholders that will be replaced with actual values when the script is executed in a
live NiFi environment.

Determining the Database URL

The script then defines dbUrlSample, which determines the full database connection URL. If the airportld is
present, it appends the airportld to the dbUrlBase, creating a connection URL specific to that airport's
database. If airportld is not provided, the URL defaults to a generic default_database. This dynamic URL
creation allows the script to connect to different databases depending on the provided airportld. The
connectionSample object is declared as null initially and will later be used to hold the actual database
connection.

Establishing Database Connection and Data Validation

Attempting Database Connection

In this section, the script attempts to establish a connection to the target database using the
DriverManager.getConnection() method. The connection is made using the previously defined
connection URL (dbUrlSample), username (dbUser), and password (dbPassword). Once the
connection is established, the script sets the autoCommit property to false. This ensures that
database transactions are not committed automatically, giving the script full control over when to
commit or rollback changes.

72 | Page

inn[2lataAnalytics

Retrieving Valid Column Names from the Database

The script calls the getValidColumnNames() function to retrieve a list of valid column names from
the database schema for the specified tableName. This function queries the database metadata to
get the list of columns that exist in the target table.

Filtering Incoming Attributes Based on Valid Columns

Next, the script filters the flattenedAttributes map to keep only those columns whose names match the valid
columns retrieved from the database schema. This filtering ensures that only valid attributes (those that exist
in the target table) are processed, and prevents attempts to insert or update invalid columns that do not
exist in the table.

Handling Invalid or Missing Matching Columns

If the filtered validAttributes map is empty (i.e., there are no matching columns between the provided
attributes and the table schema), the script logs an error indicating that no matching columns were found. It
then transfers the flowFile to the REL_FAILURE relationship, terminating the processing of that particular
FlowFile.

Handling Insert/Update Operations and Error Management

Checking if the Record Already Exists

The script starts by checking if a record with the provided id already exists in the target table. This is done by
preparing a SQL query that looks for the id in the specified table. The id value is obtained from the
validAttributes map. The query is executed using a prepared statement, which ensures that the id is securely
and correctly inserted into the query. If the record exists (i.e., the query returns a result), the script proceeds
to the update operation. If the record does not exist, it will proceed with the insert operation.

If the key corresponds to updated_at, the script ensures that the value is converted into a proper PostgreSQL-
compatible timestamp with timezone (timestamptz):

Date Parsing: The script attempts to parse the date-time string using a specific format (yyyy-MM-dd
HH:mm:ss.SSS Z). This format includes the date, time, milliseconds, and timezone offset.

Conversion to Timestamp: After parsing the string into an OffsetDateTime object, the script converts it into

a Timestamp object using Timestamp.from(). This conversion ensures compatibility with the database's
expected data type for updated_at.

73 | Page

inn2JataAnalytics
Error Handling: If the script fails to parse the date-time string (e.g., due to an invalid format), it logs an error
and re-throws the exception to halt further execution. This prevents corrupted or improperly formatted
timestamps from being stored.

Handling List Values: If the value is a list (e.g., a collection of strings or numbers), the script joins the
elements into a single string, separated by commas. This allows multi-value data to be stored as a single
database field, commonly used for storing delimited lists.

Handling Other Data Types: For all other data types, the script uses preparedStatement.setObject() to
dynamically set the value in the prepared statement. This method ensures that the database driver
determines the most appropriate type for the value.

Summary of Dynamic Handling

The setPreparedStatementValue() function ensures that each value is properly formatted and inserted into the SQL
query according to its type:

Null values are stored as NULL. The updated_at column is correctly parsed and stored as a timestamp with timezone.

Lists are serialized as comma-separated strings. Other types are handled generically to maintain flexibility.
This robust handling ensures that the database receives clean, valid, and well-structured data during SQL execution.

Column Name Truncation
Purpose of Truncation
In PostgreSQL, the maximum allowed length for a column name is 63 characters. If a column name exceeds
this length, it must be truncated to meet the database's constraints. The truncateColumnName function
ensures that column names conform to this limit.

Truncating Column Names

Length Check: The function checks if the length of the provided column name (name) exceeds the maximum
allowed length (63 characters).

Truncation Logic: If the column name exceeds 63 characters, it uses the take(maxLength) method to extract
only the first 63 characters. If the column name is within the limit, it remains unchanged.

Escaping Quotes
After truncation (if necessary), the function escapes any double quotes (") in the column name by replacing

them with two consecutive double quotes (""). This prevents syntax errors when the column name is used in
SQL queries.

74 | Page

inn2JataAnalytics

Example Use Cases

Input: A column name like
very _long_column_name_exceeding_sixty three characters_in_length_but_needs_to be_ truncated.

Truncated Output: very_long_column_name_exceeding_sixty _three_characters_in_lengt.

Escaped Name: If the column name contains a double quote, e.g., column"name, it becomes column""name.
Ensuring Compatibility
This function ensures that dynamically generated or user-provided column names remain compatible with

PostgreSQL's length constraints and are safe to use in SQL queries without causing runtime errors. It is particularly
useful in scenarios where column names are derived from user inputs or external sources.

Retrieving Valid Column Names

Overview

The getValidColumnNames function retrieves a list of column names for a specific table by querying the
database's metadata. This ensures operations are performed only on valid columns as defined in the
database schema.

Retrieving Metadata

Accessing Metadata: The script uses the getMetaData() method on the database connection to fetch
metadata, which contains information about the database schema, tables, and columns.

Querying Columns: The getColumns method of DatabaseMetaData is used to fetch metadata about
all columns in the specified table.

The parameters include null for schema and catalog, to target all schemas, the table name for which
column metadata is required and null for the column pattern, to include all columns in the table.

Extracting Column Names

Iteration Through ResultSet: The function iterates over the result set returned by getColumns using
a while loop.

75 | Page

inn2JataAnalytics

For each entry: It retrieves the column name using getString("COLUMN_NAME").

Normalization: Column names are converted to lowercase for consistent handling, as databases may
treat column names differently with respect to case sensitivity.

Returning Valid Columns
Collecting Columns: Valid column names are appended to the validColumns list.

Final Output: The list of valid column names is returned, providing the caller with all the columns
present in the specified table.

Performing Update Operations

Overview

The performUpdate function is responsible for updating an existing record in the database. It dynamically
generates the necessary SET clause for updating specific columns and executes the query using secure
parameterized inputs.

Generating the Update Clause

Column Validation and Formatting: The function iterates through the attributes provided in validAttributes
(key-value pairs to update) and dynamically constructs the list of columns to be updated.
Column names are validated and truncated if necessary. Quoting ensures that column names are compatible

with the database's requirements.

Dynamic SQL Construction: The SET clause is built to include only the columns specified in validAttributes,
making the query adaptable to different data inputs.

Preparing the Query

Dynamic Table Reference: The table name is properly quoted to handle special characters or reserved
keywords.

PreparedStatement Usage: A PreparedStatement is created, enabling the query to securely bind values to
placeholders instead of directly embedding them.

76 | Page

inn[2lataAnalytics

Binding Parameters

Attribute Value Binding: Each attribute's value is assigned to the corresponding placeholder using the
setPreparedStatementValue helper function. This ensures proper formatting (e.g., handling nulls,

timestamps, and lists).
ID Binding: The idValue is appended as the last parameter to specify which record to update.

Query Execution and Cleanup

Executing the Update: The prepared query is executed, sending the update request to the database.

Resource Management: The PreparedStatement is closed after execution to release resources and maintain

efficient database connections.
Error Handling and Flexibility:

This method provides:

Flexibility: Dynamically handles varying sets of columns without requiring predefined SQL. Security: Uses
parameterized queries to prevent SQL injection. Efficiency: Only updates specified columns, reducing

unnecessary ope rations.

77 | Page

inn2JataAnalytics

Delete Operation Flow

The delete operation is handled through a specific flow, where the operation is performed based on records in the
data_forms_dataformsrecyclebin table and its delete_date column. To manage this operation effectively, a boolean
flag (true/false) is introduced for the records in the data_forms_dataformsrecyclebin table. This flag determines the
action to be taken on the corresponding records in the target database/table.

If the flag is assigned as true in the Parameters of nifi, the corresponding record in the target database/table, which
contains an is_deleted column (default boolean value set to false), will be updated to true.

If the flag is assigned as false in the Parameters of nifi, the corresponding record in the target table will be deleted.

Steps to Achieve the Flow:

1.

QueryDatabaseTableRecord Processor:
a.
b.

This processor is used to maintain a cache date.

Initial Schedule: On the first execution, it fetches all records from the
data_forms_dataformsrecyclebin table based on the delete_date column and stores the cache date
(which is max of delete_date column) in the processor's viewstate.

Subsequent Runs: For subsequent executions, the processor only fetches records with a delete_date
greater than the cache date. This ensures incremental processing of records.

2. UpdateAttribute Processor:

To maintain the flag, an UpdateAttribute processor is used as the second step in the flow.

In the processor properties, a new property is created with the name Maintain_history_config_flag.
The value of this property is configurable using NiFi Global Parameters, which allows dynamic
updates without needing to open or modify the processor directly.

The value of this flag can be set to true or false based on the requirements.

By following these steps, the delete operation can be dynamically managed to either update the is_deleted flag in
the target table or completely delete the record as per the flag's value.

3.

ExecuteGroovyScript:

To perform update or delete operations in the target database/table, the ExecuteGroovyScript processor is
utilized. The script processes input data, extracts necessary attributes, and determines the appropriate
operation—either updating a flag (is_deleted = true) or deleting the record—based on a configurable flag
(Maintain_history_config_flag).

78 | Page

inn2JataAnalytics

Below is the detailed explanation of the script's workflow:

Script Overview

The script executed within the ExecuteGroovyScript processor performs update or delete operations in the
target database or table based on a configurable flag named Maintain_history_config_flag.

Input Data Processing

The script processes input data by reading records line-by-line, where the first line represents headers and
the second line contains corresponding data values. The data is split using a defined delimiter (u), mapped
into key-value pairs, and attributes like data_json are extracted. From the parsed JSON content, fields such
as form_parent, id, and airport_key are identified for use in subsequent operations.

Dynamic Attribute Construction

Using the extracted attributes, the script dynamically constructs database and table names. The database
name is prefixed with db_ followed by the airport_key, while the table name is prefixed with tbl_form_
followed by the form_parent. These dynamic values are then used to identify the target database and table.

Database Connection

The script retrieves essential database connection details such as the base database URL, user credentials,
and dynamically constructed database names. It uses these details to securely establish a connection with
the target database.

Flag-Based Operations

Based on the Maintain_history config_flag, the script determines the operation to be performed. If the flag
is set to true, an UPDATE query is executed to set the is_deleted column to true, marking the record as
logically deleted. If the flag is set to false, a DELETE query is executed to completely remove the record from
the target table.

Error Handling

The script includes robust error handling mechanisms to capture and log any issues during database
operations. If an error occurs, details such as the error message are stored in flow file attributes for further
debugging and monitoring.

Resource Management

After completing the operation, the script ensures that all database connections and resources are properly
closed. This prevents resource leaks and ensures efficient utilization of system resources.

79 | Page

inn2JataAnalytics

8. Incremental / Manual refresh of data based on Airport Codes and Form parent ID

The document explains different methods for refreshing data in the database, including full refreshes, incremental
updates, and manual refreshes based on specific parameters such as form parent IDs and airport codes. Each
approach is defined to ensure optimized performance, data consistency, and flexibility in executing database
operations. The flows and logic for these processes are established using Apache NiFi processors, primarily focusing
on queryDatabaseRecord and executeSQLRecord processors, and incorporating cache maintenance techniques for
incremental update

Full / Incremental Refresh of Databases with Maintaining Cached Date

To perform a full refresh of databases while maintaining a cache date, we utilize the NiFi 'QueryDatabaseRecord’
processor. This processor allows us to efficiently manage incremental updates by leveraging its view state
functionality. The view state stores the most recent record timestamp, which is then used as a reference point for
subsequent data fetch operations.

In this implementation, the updated_at column in the table data_forms_formanswer serves as the timestamp
column to track the most recent updates. When the processor runs, it queries the table and retrieves only those
records that have a timestamp greater than the last cached value. This ensures that we fetch only new or updated
records since the last refresh, optimizing the overall performance and reducing data duplication.

Full Data Refresh Without Cached Date

For scenarios where a full refresh of data or incremental refresh is required without maintaining a cached date, we
use the NiFi 'ExecuteSQLRecord' processor. This processor executes a SQL query that fetches all records from the
table where form_parent_id is not null.

The process selects all records starting from the beginning of the table, ensuring a complete data refresh. However,
since the id column is a primary key in the target database, attempting to insert duplicate id values would result in a
constraint violation. To address this issue, we modified the data insertion script to handle duplicate keys gracefully.
Instead of throwing an error when duplicate id values are encountered, the script performs an upsert operation. If
the same id is encountered again, the existing record in the database is updated rather than being reinserted. This
approach ensures consistency and avoids data conflicts during a full refresh.

Manual Incremental Refresh for Form Parent ID/Airport with Cached Date

This process involves maintaining a cached date in a dedicated table to enable efficient manual refreshes of specific
form parent IDs or entire databases. To achieve this, we first create a table to store the maximum updated_at date
column from the data_forms_formanswer table. The SQL script for creating this table is as follows:

CREATE TABLE public.date_table (
id SERIAL PRIMARY KEY,
max_date TIMESTAMP NOT NULL

);

80 | Page

innltataAnalytics
This table stores the most recent updated_at value and is used as a reference for incremental refreshes. A separate
flow in NiFi is created to query the data_forms_formanswer table and fetch the maximum updated date using the
SQL query:

SELECT MAX(updated_at) FROM data_forms_formanswer;

The resulting date is stored in the date_table using an upsert operation. This table contains a single row with two
columns: id and timestamp. It serves as a cached date repository for all refresh operations.

To execute a full or partial refresh based on the cached date, global parameters such as dbname (database name)
and form_id (form parent ID) are used. These parameters allow users to configure the refresh operation without
modifying the processors directly. If a specific form parent ID needs to be refreshed, both dbname and form_id must
be specified. If the entire database requires a refresh, the form_id parameter is set to NULL.

The ExecuteSQLRecord processor is then used to fetch only the records updated after the cached date.

Manual Refresh for Specific Form Parent ID/Airport Without Cached Date

In cases where a manual refresh is required for a specific form parent ID or an airport without using the cached date,
the process is like the above but does not involve querying or referencing the cached date table. Instead, all records
are refreshed starting from the beginning of the table.

The ExecuteSQLRecord processor is used to fetch all data, regardless of the updated at column.

The flexibility of this approach lies in its ability to target specific datasets for refresh without relying on the cached
date. This is particularly useful when the cache date is unavailable, corrupted, or irrelevant for the operation.

Description of Processor Workflow

Every refresh operation, whether full or incremental, passes through a series of pre-configured processors. The pre-
processors are designed to align with the specific operation being performed. The processors include:

l. Form Answer Table Mapping: Handles mapping of form answer data to the target database schema.
II. Approvals Data Mapping: Processes approvals-related data and integrates it into the workflow.
M. Database and Table Creation: Ensures the necessary database structures (tables,partitions & indexes) are
created prior to data insertion.
V. Data Insertion: Inserts or upserts the data into the target database, ensuring no duplication and maintaining
consistency.

Each of these processors plays a key role in ensuring that data refresh operations—whether full, incremental, or
manual—are executed efficiently and without error.

81 | Page

inn2JataAnalytics

9. Performance Considerations in Database

Partitioning and indexing are two critical strategies for optimizing database performance, particularly when dealing
with large datasets. They help improve query execution times, reduce I/0 overhead, and manage resource utilization
effectively. When applied to a table, their impact varies depending on the structure of the data, the query patterns,
and the storage architecture.

Partitioning

Partitioning is a technique that splits a table into smaller, manageable subsets, improving database performance and
making data easier to manage. Partitioning is especially useful for large tables with millions of rows, where querying,
updating, or managing the table as a whole would otherwise lead to significant performance bottlenecks. When
partitioning is applied, a table remains logically intact, but the data is physically divided based on certain criteria.
These subsets are stored as independent partitions, which can be accessed individually based on query requirements.

One of the most common partitioning methods is range partitioning, where data is divided into partitions based on
ranges of column values. For example, in a table containing transaction records, data can be partitioned by the date
column into monthly partitions. Queries filtering for a specific month will only access the relevant partition instead
of scanning the entire table, resulting in reduced 1/0 and faster query execution. Similarly, list partitioning divides
data based on discrete values in a column, such as dividing records based on region or airport code. Hash partitioning,
on the other hand, distributes data across partitions using a hash function, ensuring an even spread of rows to avoid
data skew. This method is useful when no natural ranges or lists are available for partitioning.

The benefits of partitioning are particularly evident when it comes to improving performance and managing large
datasets. Partition pruning, a feature used by most modern databases, allows queries to target only relevant
partitions. For example, a query that filters by a specific date range will automatically ignore irrelevant partitions,
dramatically reducing the number of rows scanned. Partitioning also enables parallel processing, where queries or
maintenance operations can run on multiple partitions simultaneously, leveraging multi-core systems for faster
execution. Maintenance tasks such as deleting or archiving old data become much more efficient, as entire partitions
can be dropped or moved without impacting other partitions. This is particularly valuable for managing time-series
data, where older data can be archived by dropping partitions without the need for complex delete operations.

However, partitioning introduces challenges that must be carefully managed. Poorly designed partitions can lead to
data skew, where some partitions contain far more rows than others, negating performance benefits. Queries that
do not use the partition key will require scanning all partitions, resulting in no performance improvement.
Additionally, each partition comes with storage and management overhead, and excessive partitioning can lead to
inefficiencies during query planning. For optimal performance, partitioning must be aligned with query patterns and
storage capacity.

We have implemented range partitioning for the target tables, using the 'updated_at' column as the partitioning key.
The ranges are defined based on the values in the 'updated_at' column to optimize query performance and data
management.

82 | Page

inn2JataAnalytics

Indexing

Indexing is a technique that improves the speed of data retrieval operations on a table by creating an optimized data
structure that allows the database to locate rows efficiently. An index functions much like a book index, where
keywords point directly to the page number, bypassing the need to search through every page. Similarly, an index
enables the database to reduce the number of rows scanned when executing queries, enhancing overall performance.

Indexes can be created on one or more columns, depending on the query requirements. For example, a single-
column index on a field like airport_code will optimize queries that filter data using this column. When queries
involve filtering, sorting, or grouping by multiple columns, a composite index can be created on those specific
columns to speed up execution. Indexes are particularly beneficial for operations like SELECT, JOIN, ORDER BY, and
GROUP BY, where faster row access can significantly reduce query response times. A clustered index determines the
physical order of rows in a table, ensuring rows are stored in the same sequence as the index. Conversely, a non-
clustered index provides a logical ordering of rows and stores pointers to their physical locations, enabling faster
searches without altering row order.

While indexes improve query performance, they also come with trade-offs. Storage overhead is a notable
consideration, as indexes require additional space proportional to the table size and the number of indexed columns.
For instance, a table with multiple indexes will consume more disk space, increasing database storage requirements.
Moreover, maintaining indexes can impact the performance of write operations such as INSERT, UPDATE, and
DELETE. Each write operation requires the database to update all associated indexes to keep them consistent, leading
to overhead during high-volume data modifications. Over-indexing—creating unnecessary or redundant indexes—
can further degrade performance by slowing down writes and consuming excessive storage.

Regular maintenance of indexes is essential to ensure they remain efficient. Over time, indexes can become
fragmented, meaning their structure no longer aligns optimally with the table’s physical data layout. This
fragmentation can lead to slower read performance as the database must perform additional 1/O to retrieve
scattered data. Tasks like index rebuilding or reorganizing are critical for defragmenting indexes and restoring their
performance. Properly balancing the number of indexes and their relevance to query patterns is key to achieving
optimal database performance.

We have created indexes for all the columns in the target tables. However, for columns where the column value
length exceeds 8KB, we have intentionally skipped creating indexes. This is because attempting to index columns
with lengths greater than 8KB triggers an error, as the database does not support indexes of this size.

83 | Page

inn2JataAnalytics

10. Final Deliverables
The following deliverables are included as part of the project setup and implementation:
Technologies Used

Apache NiFi :-Apache NiFi is an open-source data integration tool that automates the movement of data
between disparate systems. It provides a web-based interface to design data flows, enabling users to create
complex data pipelines through a drag-and-drop interface.

Features:

- Data Ingestion: NiFi can ingest data from various sources, including databases, file systems, and cloud
services.
- Data Transformation: It allows for data transformation through processors that can filter, aggregate, and
modify data as it moves through the pipeline.
- Data Routing: NiFi can route data based on content, enabling conditional data flows.
- Security: It offers secure data transfer through SSL and supports user authentication and authorization.

NiFi Registry :- NiFi Registry is a complementary service to Apache NiFi, used for versioning and managing
the flow configurations. It allows users to store and manage different versions of their data flows, enabling
better collaboration and change management.

Features:

- Version Control: Tracks changes to data flows, allowing users to revert to previous versions.
- Collaboration: Multiple users can work on the same data flow and track changes made by others.
- Deployment: Facilitates the deployment of data flows across different NiFi instances.

GitHub: - GitHub is a web-based platform used for version control and collaborative software development.
It hosts repositories where code and related files can be stored and managed.

Features:

- Repository Management: Stores and manages code repositories, including version history and
branching.

- Collaboration: Enables multiple users to collaborate on projects, submit pull requests, and review code
changes.

- Integration: Supports integration with various CI/CD tools for automated testing and deployment.

LDAP (Lightweight Directory Access Protocol):- LDAP is a protocol used for accessing and maintaining
distributed directory information services. It is commonly used for managing user information and
authentication in a centralized directory.

84 | Page

inn[2lataAnalytics

Features:

- User Authentication: Manages user credentials and authenticates users across different systems.

- Directory Services: Stores and retrieves directory information such as user details, organizational units,
and network resources.

- Access Control: Implements access control policies based on user roles and attributes.

Apache Ranger:- Apache Ranger is a framework to enable, monitor, and manage comprehensive data
security across the Hadoop ecosystem. It provides centralized security administration, fine-grained access
control, and auditing capabilities.

Features:

- Centralized Security: Manages security policies from a central administration console.
- Fine-Grained Access Control: Defines access policies at the file, table, or column level.
- Auditing: Monitors and logs all access requests for data, providing detailed audit reports.

AeroSimple Documentation

Description: This document provides an in-depth explanation of the NiFi ETL pipeline for handling forms and
workflows data. It covers the entire NiFi flow, describing each component and its role within the pipeline.

Contents:

- NiFi Flow Overview: Detailed descriptions of each component in the NiFi pipeline.
- Functional Usage Guidelines: Instructions on how to use and customize the pipeline for specific data
processing needs.

These deliverables ensure a comprehensive understanding and smooth implementation of the NiFi ETL
process for handling forms and workflows data. They provide both technical setup instructions and functional
usage guidelines, facilitating easy adoption and integration into your existing data infrastructure.

GitHub Repository Contents
1. FORMS_&_WORKFLOWS.json

Description: This is a NiFi template that streamlines the ETL process for forms and workflows data. The
template can be imported directly into your Apache NiFi instance via the NiFi Registry. It provides a pre-
configured workflow that is ready for immediate use, allowing you to handle forms and workflows data
efficiently.

2. Forms & Workflows Document.pdf

Description: This document serves as a comprehensive guide to setting up and using the provided NiFi
template. It includes detailed instructions on configuring database connections and integrating the NiFi
template with your existing data infrastructure.

85 | Page

inn2JataAnalytics

Contents:

- Setup Instructions: Step-by-step guidance on importing and configuring the NiFi template from Nifi
registry.

- Database Connection Configuration: Instructions on setting up and managing database connections to
ensure smooth data integration.

3. NIFI-README-2.0.md

Description: This file acts as a comprehensive setup guide for all the technologies used in the project. It
includes detailed steps required to configure your environment to work seamlessly with the provided NiFi
template.

Contents:

- Apache NiFi Configuration: Instructions for installing and configuring NiFi.

- NiFi Registry Configuration: Steps for setting up the NiFi Registry.

- GitHub Integration: Guide on how to integrate the templates and documents from the GitHub repository.
- LDAP Setup: Instructions for configuring LDAP for user authentication and access control.

- Apache Ranger Configuration: Steps for setting up Apache Ranger to manage data security and access
policies.

86 | Page

